Радиатор от процессора установить транзисторы. Радиаторы. Солнечная батарея: что это вообще такое и как работает

10.1. Назначение радиаторов - отводить тепло от полупроводниковых приборов, что позволяет снизить температуру p-n-переходов и тем самым уменьшить ее влияние на рабочие параметры приборов. Применяют пластинчатые, ребристые и штыревые радиаторы, Для улучшения теплоотвода полу проводниковый при бор лучше всего крепить непосредственно к радиатору Если необходима электрическая изоляция прибора от шасси, радиатор крепят на шасси через изолирующие прокладки. Теплоизлучающая способность радиатора зависит от степени черноты материала (или его поверхности), из которого изготовлен радиатор:

Чем больше степень черноты, тем теплоотвод будет эффективнее.

10.2. Штыревой радиатор -весьма эффективный теплоотвод для полупроводниковых приборов. Для изготовления его требуется листовой дюралюминий толщиной 4-6 мм и алюминиевая проволока диаметром 3-5 мм.
На поверхности предварительно обработанной пластины радиатора намечают кернером места отверстий под штыри, выводы транзисторов (или диодов) и крепежные винты. Расстояние между центрами отверстий (шаг) под штыри в ряду и между рядами должно быть равно 2- 2,5 диаметра применяемой алюминиевой проволоки. Диаметр отверстий выбирают с таким расчетом, чтобы проволока входила в них с возможно меньшим зазором. С обратной стороны отверстия зенкуют на глубину 1- 1,5мм.
Из стального стержня длиной 80-100 и диаметром В-10 мм изготовляют оправку, для чего в торце стержня сверлят отверстие диаметром, на 0,1 мм большим диаметра проволоки. Глубина отверстия должна быть равна высоте будущих штырей радиатора.

Рис. 10.1. Обжимка для штырей радиатора

Затем нарезают требуемое число заготовок штырей. Для этого кусок проволоки вставляют в отверстие оправки и откусывают кусачками так, чтобы длина выступающего из оправки конца была на 1-1,5 мм больше толщины пластины. Оправку зажимают в тиски отверстием вверх, в отверстие вводят заготовку штыря, на выступающий конец которого надевают пластину лицевой стороной и расклепывают его легкими ударами молотка, стараясь заполнить зенкованное углубление. Таким образом устанавливают все штыри.
Штыревой радиатор можно также изготовить, используя несколько иной способ установки штырей в отверстиях пластины основания. Изготовляют стальную обжимку, чертеж которой для штырей диаметром 3 и длиной до 45мм приведен на рис. 10.1. Рабочую часть обжимки следует закалить. Штырь вставляют в отверстие основания радиатора, кладут основание на наковальню, сверху на штырь надевают обжимку и ударяют по ней молотком. Вокруг штыря образуется кольцевая канавка, а сам он оказывается плотно посаженным в отверстии.
Если необходимо изготовить двусторонний радиатор, то потребуется две такие обжимки: в одну из них, установленную на наковальне отверстием вверх, вставляют штырь, нанизывают основание радиатора, а сверху надевают вторую обжимку. Ударом молотка по верхней обжимке фиксируют штырь сразу с двух сторон. Этим способом можно изготовлять радиаторы как из алюминиевых, так и из медных сплавов. И, наконец, штыри можно установить с помощью пайки. Для этого берут в качестве материала медную или латунную проволоку диаметром 2-4 мм. Один конец штыря лудят на длину, большую толщины пластины на 1-2 мм. Диаметр отверстий в пластине должен быть таким, чтобы облуженные штыри входили в них без особого усилия.
В отверстия основания вводят жидкий флюс (табл. 9.2), вставляют штыри и мощным паяльником паяют каждый из них. По окончании работы радиатор промывают ацетоном.

Рис. 10.2. Радиатор для мощного транзистора

10.3. Радиатор из листовой меди толщиной 1-2мм можно изготовить для мощных транзисторов типа П210, КТ903 и других в подобных корпусах. Для этого вырезают из меди круг диаметром 60 мм, в центре заготовки размечают отверстия для крепления транзистора и его выводов. Затем в радиальном направлении надрезают круг ножницами для металла на 20 мм, разделив по окружности на 12 частей. После установки транзистора каждый сектор разворачивают на 90° и отгибают кверху.

10.4. Радиатор для мощных транзисторов типа КТ903, KT908 и других в подобных корпусах можно изготовить из алюминиевого листа толщиной 2мм (рис. 10.2). Указанные размеры радиатора обеспечивают площадь излучающей поверхности, достаточную для рассеяния мощности на транзисторе до 16 Вт.

Рис. 10.3. Радиатор для маломощного транзистора: а-развертка; б- общий вид

10.5. Радиатор для маломощных транзисторов можно изготовить из листовой красной меди или латуни толщиной 0,5 мм в соответствии с чертежами на рис. 10.3. После выполнения всех прорезей развертку сворачивают в трубку, используя оправку соответствующего диаметра. Затем заготовку плотно надевают па корпус транзистора и прижимают пружинящим кольцом, предварительно отогнув боковые крепежные ушки. Кольцо изготовляют из стальной проволоки диаметром 0,5-1 мм. Вместо кольца можно использовать бандаж из медной проволоки. Затем загибают вниз боковые ушки, отгибают наружу на нужный угол надрезанные "перья" заготовки - и радиатор готов.

10.6. Радиатор для транзисторов серии КТ315, КТ361 можно изготовить из полоски меди, алюминия или жести шириной на 2-3 мм больше ширины корпуса транзистора (рис. 10.4). Транзистор вклеивают в радиатор эпоксидным или другим клеем с хорошей теплопроводностью. Для лучшего теплового контакта корпуса транзистора с радиатором необходимо снять с корпуса лакокрасочное покрытие в местах контакта, а установку в радиатор и склеивание выполнить с минимальным возможным зазором. Устанавливают транзистор с радиатором на плату, как и обычно, при этом нижние кромки радиатора должны упираться в плату. Если ширина полоски 7 мм, а высота радиатора (из луженой жести толщиной 0,35 мм) - 22 мм, то при мощности рассеяния 500 мВт температура радиатора в месте приклеивания транзистора не превышает 55 °С.

10.7. Радиатор из "хрупкого" металла, например из листового дюралюминия, выполняют в виде набора пластин (рис. 10.5). При изготовлении прокладок и пластин радиатора необходимо следить, чтобы на кромках отверстий и на краях пластин не было заусенцев. Соприкасавшиеся поверхности прокладок и пластин тщательно [шлифуют на мелкозернистой наждачной бумаге, положив ее на ровное стекло. Если не требуется изолировать корпус транзистора от корпуса прибора, то радиатор можно крепить на стенке корпуса прибора или на внутренней перегородке без изолирующих прокладок, что обеспечивает более эффективную теплоотдачу.

10.8. Крепление диодов типа Д226 на радиаторе или на теплоотводящей пластине. Диоды крепят с помощью фланца. Катодный вывод откусывают у самого основания и тщательно зачищают донышко на мелкозернистой шкурке до получения чистой ровной поверхности. Если необходимо катодный вывод оставить, то в радиаторе сверлят отверстие под вывод, ацетоном с донышка снимают лак и аккуратно опиливают бортик (ободок) диода заподлицо с донышком для лучшего теплового контакта диода с радиатором.

10.9. Улучшение теплового контакта между транзистором и радиатором позволит обеспечить большую мощность рассеяния на транзисторе.
Иногда, особенно при использовании литых радиаторов, удалить раковины и другие изъяны поверхности в месте теплового контакта (для его улучшения) бывает затруднительно, а порой и невозможно. В этом случае поможет свинцовая прокладка. Пластину свинца аккуратно раскатывают или расплющивают между двумя гладкими плоскими брусками до толщины примерно 10,5 мм и вырезают прокладку необходимых размеров и формы. Мелкозернистой шкуркой зачищают обе ее стороны, устанавливают под транзистор и туго сжимают узел винтами. Прокладка не должна быть толще 1 мм, так как теплопроводность свинца невысока.

10.10. Чернение алюминиевых радиаторов. Для повышения эффективности теплоотдачи радиатора его поверхность обычно делают матовой и темной. Доступный способ чернения-обработка радиатора в водном растворе хлорного железа.
Для приготовления раствора требуется равное по объему количество порошка хлорного железа и воды. Радиатор очищают от пыли, грязи, тщательно обезжиривают бензином или ацетоном и погружают в раствор. Выдерживают в растворе 5-10 мин. Цвет радиатора получается темно-серым. Обработку необходимо производить в хорошо проветриваемом помещении или на открытом воздухе.

ЗНАЕТЕ ЛИ ВЫ?

10.11. Тепловой режим маломощных транзисторов можно облегчить, надев на металлический корпус транзистора тор ("баранку") - спираль, свитую из медной, латунной или бронзовой проволоки диаметром 0,5-1,0 мм.
10.12. Хорошим радиатором может быть металлический корпус устройства или его внутренние перегородки.
10.13. Ровность контактной площадки радиатора проверяют, смазав основание транзистора какой-либо краской и приложив его к поверхности контактной площадки. Выступающие участки контакт. ной площадки радиатора окрасятся.
10.14. Для обеспечения хорошего теплового контакта можно поверхность транзистора, прилегающую к радиатору, смазать невысыхающей смазкой, например силиконовой. Это позволит снизить тепловое сопротивление контакта в полтора-два раза.
10.15. Для улучшения условий охлаждения радиатор нужно располагать так, чтобы не создавать помех конвекционным потокам воздуха: ребра радиатора-вертикально, а сторона, на которой расположен транзистор, должна быть сбоку, а не снизу или сверху.

О защите электрических схем от неправильной полярности питания при помощи полевого транзистора, я вспомнил о том, что давно имею не решенную проблему автоматического отключения аккумулятора от зарядного устройства при обесточивании последнего. И стало мне любопытно, нельзя ли применить подобный подход в другом случае, где тоже испокон века в качестве запорного элемента использовался диод.

Эта статья является типичным гайдом по велосипедостроению, т.к. рассказывает о разработке схемы, функционал которой уже давно реализован в миллионах готовых устройств. Поэтому просьба не относится к данному материалу, как к чему-то совсем утилитарному. Скорее это просто история о том, как рождается электронное устройство: от осознания необходимости до работающего прототипа через все препятствия.

Зачем все это?

При резервировании низковольтного источника питания постоянного тока самый простой путь включения свинцово-кислотного аккумулятора – это в качестве буфера, просто параллельно сетевому источнику, как это делалось в автомобилях до появления у них сложных «мозгов». Аккумулятор хоть и работает в не самом оптимальном режиме, но всегда заряжен и не требует какой-либо силовой коммутации при отключении или включении сетевого напряжения на входе БП. Далее более подробно о некоторых проблемах такого включения и попытке их решить.

История вопроса

Еще каких-то 20 лет назад подобный вопрос не стоял на повестке дня. Причиной тому была схемотехника типичного сетевого блока питания (или зарядного устройства), которая препятствовала разряду аккумулятора на его выходные цепи при отключении сетевого напряжения. Посмотрим простейшую схему блока с однополупериодным выпрямлением:

Совершенно очевидно, что тот же самый диод, который выпрямляет переменное напряжение сетевой обмотки, будет препятствовать и разряду аккумулятора на вторичную обмотку трансформатора при отключении питающего напряжения сети. Двухполупериодная мостовая схема выпрямителя, несмотря на несколько меньшую очевидность, обладает точно такими же свойствами. И даже использование параметрического стабилизатора напряжения с усилителем тока (такого, как широко распространенная микросхема 7812 и ее аналоги), не меняет ситуацию:

Действительно, если посмотреть на упрощенную схему такого стабилизатора, становится понятно, что эмиттерный переход выходного транзистора исполняет роль все того же запорного диода, который закрывается при пропадании напряжения на выходе выпрямителя, и сохраняет заряд аккумулятора в целости и сохранности.

Однако в последние годы все изменилось. На смену трансформаторным блокам питания с параметрической стабилизацией пришли более компактные и дешевые импульсные AC/DC-преобразователи напряжения, которые обладают гораздо более высоким КПД и соотношением мощность/вес. Вот только при всех достоинствах, у этих источников питания обнаружился один недостаток: их выходные цепи имеют гораздо более сложную схемотехнику, которая обычно никак не предусматривает защиту от обратного затекания тока из вторичной цепи. В результате, при использовании такого источника в системе вида “БП -> буферный аккумулятор -> нагрузка”, при отключении сетевого напряжения аккумулятор начинает интенсивно разряжаться на выходные цепи БП.

Простейший путь (диод)

Простейшее решение состоит в использовании диода с барьером Шоттки, включенного в разрыв положительного провода, соединяющего БП и аккумулятор:

Однако основные проблемы такого решения уже озвучены в упомянутой выше статье. Кроме того, такой подход может быть неприемлемым по той причине, что для работы в буферном режиме 12-вольтовому свинцово-кислотному аккумулятору нужно напряжение не менее 13.6 вольт. А падающие на диоде почти пол вольта могут сделать это напряжение банально недостижимым в сочетании с имеющимся блоком питания (как раз мой случай).

Все это заставляет искать альтернативные пути автоматической коммутации, которая должна обладать следующими свойствами:

  1. Малое прямое падение напряжения во включенном состоянии.
  2. Способность без существенного нагрева выдерживать во включенном состоянии прямой ток, потребляемый от блока питания нагрузкой и буферным аккумулятором.
  3. Высокое обратное падение напряжения и низкое собственное потребление в выключенном состоянии.
  4. Нормально выключенное состояние, чтобы при подключении заряженного аккумулятора к изначально обесточенной системе не начинался его разряд.
  5. Автоматический переход во включенное состояние при подаче напряжения сети вне зависимости от наличия и уровня заряда аккумулятора.
  6. Максимально быстрый автоматический переход в выключенное состояние при пропадании напряжения сети.
Если бы диод являлся идеальным прибором, то он без проблем выполнил все эти условия, однако суровая реальность ставит под сомнение пункты 1 и 2.

Наивное решение (реле постоянного тока)

При анализе требований, любому, кто хоть немного «в теме», придет мысль использовать для этой цели электромагнитное реле, которое способно физически замыкать контакты при помощи магнитного поля, создаваемого управляющим током в обмотке. И, наверное, он даже набросает на салфетке что-то типа этого:

В этой схеме нормально разомкнутые контакты реле замыкаются только при прохождении тока через обмотку, подключенную к выходу блока питания. Однако если пройтись по списку требований, то окажется, что эта схема не соответствует пункту 6. Ведь если контакты реле были однажды замкнуты, пропадание напряжения сети не приведет к их размыканию по той причине, что обмотка (а с ней и вся выходная цепь БП) остается подключенной к аккумулятору через эти же контакты! Налицо типичный случай положительной обратной связи, когда управляющая цепь имеет непосредственную связь с исполнительной, и в итоге система приобретает свойства бистабильного триггера.

Таким образом, подобный наивный подход не является решением проблемы. Более того, если проанализировать сложившуюся ситуацию логически, то легко можно прийти к выводу, что в промежутке “БП -> буферный аккумулятор” в идеальных условиях никакое другое решение кроме вентиля, проводящего ток в одном направлении, быть просто не может. Действительно, если мы не будем использовать какой-либо внешний управляющий сигнал, то что бы мы не делали в этой точке схемы, любой наш коммутирующий элемент, однажды включившись, сделает неотличимым электричество, создаваемое аккумулятором, от электричества, создаваемого блоком питания.

Окольный путь (реле переменного тока)

После осознания всех проблем предыдущего пункта, «шарящему» человеку обычно приходит в голову новая идея использования в качестве односторонне проводящего вентиля самого блока питания. А почему бы и нет? Ведь если БП не является обратимым устройством, и подведенное к его выходу напряжение аккумулятора не создает на входе переменного напряжения 220 вольт (как это и бывает в 100% случаев реальных схем), то эту разницу можно использовать в качестве управляющего сигнала для коммутирующего элемента:

Бинго! Выполняются все пункты требований и единственное, что для этого нужно – это реле, способное замыкать контакты при подаче на него сетевого напряжения. Это может быть специальное реле переменного тока, рассчитанное на сетевое напряжение. Или обычное реле со своими мини-БП (тут достаточно любой безтрансформаторной понижающей схемы с простейшим выпрямителем).

Можно было бы праздновать победу, но мне это решение не понравилось. Во-первых, нужно подключать что-то непосредственно к сети, что не есть гуд с точки зрения безопасности. Во-вторых, тем, что коммутировать это реле должно значительные токи, вероятно, до десятков ампер, а это делает всю конструкцию не такой тривиальной и компактной, как могло показаться изначально. Ну и в-третьих, а как же такой удобный полевой транзистор?

Первое решение (полевой транзистор + измеритель напряжения аккумулятора)

Поиски более элегантного решения проблемы привели меня к осознанию того факта, что аккумулятор, работающий в буферном режиме при напряжении около 13.8 вольта, без внешней «подпитки» быстро теряет исходное напряжение даже в отсутствии нагрузки. Если же он начнет разряжаться на БП, то за первую минуту времени он теряет не менее 0.1 вольта, чего более чем достаточно для надежной фиксации простейшим компаратором. В общем, идея такова: затвором коммутирующего полевого транзистора управляет компаратор. Один из входов компаратора подключен к источнику стабильного напряжения. Второй вход подключен к делителю напряжения блока питания. Причем коэффициент деления подобран так, чтобы напряжение на выходе делителя при включенном БП было примерно на 0.1..0.2 вольта выше, чем напряжение стабилизированного источника. В результате, при включенном БП напряжение с делителя всегда будет преобладать, а вот при обесточивании сети, по мере падения напряжения аккумулятора, оно будет уменьшаться пропорционально этому падению. Через некоторое время напряжение на выходе делителя окажется меньше напряжения стабилизатора и компаратор при помощи полевого транзистора разорвет цепь.

Примерная схема такого устройства:

Как видно, к источнику стабильного напряжения подключен прямой вход компаратора. Напряжение этого источника, в принципе, не важно, главное, чтобы оно было в пределах допустимых входных напряжений компаратора, однако удобно, когда оно составляет примерно половину напряжения аккумулятора, то есть около 6 вольт. Инверсный вход компаратора подключен к делителю напряжения БП, а выход – к затвору коммутирующего транзистора. Когда напряжение на инверсном входе превышает таковое на прямом, выход компаратора соединяет затвор полевого транзистора с землей, в результате чего транзистор открывается и замыкает цепь. После обесточивания сети, через некоторое время напряжение аккумулятора понижается, вместе с ним падает напряжение на инверсном входе компаратора, и когда оно оказывается ниже уровня на прямом входе, компаратор «отрывает» затвор транзистора от земли и тем самым разрывает цепь. В дальнейшем, когда блок питания снова «оживет», напряжение на инверсном входе мгновенно повысится до нормального уровня и транзистор снова откроется.

Для практической реализации данной схемы была использована имеющаяся у меня микросхема LM393. Это очень дешевый (менее десяти центов в рознице), но при этом экономичный и обладающий довольно неплохими характеристиками сдвоенный компаратор. Он допускает питание напряжением до 36 вольт, имеет коэффициент передачи не менее 50 V/mV, а его входы отличаются довольно высоким импедансом. В качестве коммутирующего транзистора был взят первый из доступных в продаже мощных P-канальных MOSFET-ов FDD6685. После нескольких экспериментов была выведена такая практическая схема коммутатора:

В ней абстрактный источник стабильного напряжения заменен на вполне реальный параметрический стабилизатор из резистора R2 и стабилитрона D1, а делитель выполнен на основе подстроечного резистора R1, позволяющего подогнать коэффициент деления под нужное значение. Так как входы компаратора имеют весьма значительный импеданс, величина гасящего сопротивления в стабилизаторе может составлять более сотни кОм, что позволяет минимизировать ток утечки, а значит и общее потребление устройства. Номинал подстроечного резистора вообще не критичен и без каких-либо последствий для работоспособности схемы может быть выбран в диапазоне от десяти до нескольких сотен кОм. Из-за того, что выходная цепь компаратора LM393 построена по схеме с открытым коллектором, для ее функционального завершения необходим также нагрузочный резистор R3, сопротивлением несколько сотен кОм.

Регулировка устройства сводится к установке положения движка подстроечного резистора в положение, при котором напряжение на ножке 2 микросхемы превышает таковое на ножке 3 примерно на 0.1..0.2 вольта. Для настройки лучше не лезть мультиметром в высокоимпедансные цепи, а просто установив движок резистора в нижнее (по схеме) положение, подключить БП (аккумулятор пока не присоединяем), и, измеряя напряжение на выводе 1 микросхемы, двигать контакт резистора вверх. Как только напряжение резким скачком упадет до нуля, предварительную настройку можно считать завершенной.

Не стоит стремиться к отключению при минимальной разнице напряжений, потому что это неизбежно приведет к неправильной работе схемы. В реальных условиях напротив приходится специально занижать чувствительность. Дело в том, что при включении нагрузки, напряжение на входе схемы неизбежно просаживается из-за не идеальной стабилизации в БП и конечного сопротивления соединительных проводов. Это может привести к тому, что излишне чувствительно настроенный прибор сочтет такую просадку отключением БП и разорвет цепь. В результате БП будет подключаться только при отсутствии нагрузки, а все остальное время работать придется аккумулятору. Правда, когда аккумулятор немного разрядится, откроется внутренний диод полевого транзистора и ток от БП начнет поступать в цепь через него. Но это приведет к перегреву транзистора и к тому, что аккумулятор будет работать в режиме долгого недозаряда. В общем, окончательную калибровку нужно проводить под реальной нагрузкой, контролируя напряжение на выводе 1 микросхемы и оставив в итоге небольшой запас для надежности.

Существенными недостатками этой схемы являются относительная сложность калибровки и необходимость мириться с потенциальными потерями энергии аккумулятора ради корректной работы.

Последний недостаток не давал покоя и после некоторых обдумываний привел меня к мысли измерять не напряжение аккумулятора, а непосредственно направление тока в цепи.

Второе решение (полевой транзистор + измеритель направления тока)

Для измерения направления тока можно было бы применить какой-нибудь хитрый датчик. Например, датчик Холла, регистрирующий вектор магнитного поля вокруг проводника и позволяющий без разрыва цепи определить не только направление, но и силу тока. Однако в связи с отсутствием такого датчика (да и опыта работы с подобными девайсами), было решено попробовать измерять знак падения напряжения на канале полевого транзистора. Конечно, в открытом состоянии сопротивление канала измеряется сотыми долями ома (ради этого и вся затея), но, тем не менее, оно вполне конечно и можно попробовать на этом сыграть. Дополнительным доводом в пользу такого решения является отсутствие необходимости в тонкой регулировке. Мы ведь будем измерять лишь полярность падения напряжения, а не его абсолютную величину.

По самым пессимистичным расчетам, при сопротивлении открытого канала транзистора FDD6685 около 14 мОм и дифференциальной чувствительности компаратора LM393 из колонки “min” 50 V/mV, мы будем иметь на выходе компаратора полный размах напряжения величиной 12 вольт при токе через транзистор чуть более 17 mA. Как видим, величина вполне реальная. На практике же она должна быть еще примерно на порядок меньше, потому что типичная чувствительность нашего компаратора равна 200 V/mV, сопротивление канала транзистора в реальных условиях с учетом монтажа вряд ли будет меньше 25 мОм, а размах управляющего напряжения на затворе может не превышать трех вольт.

Абстрактная реализация будет иметь примерно такой вид:

Тут входы компаратора подключены непосредственно к плюсовой шине по разные стороны от полевого транзистора. При прохождении тока через него в разных направлениях, напряжения на входах компаратора неизбежно будут отличаться, причем знак разницы будет соответствовать направлению тока, а величина – его силе.

На первый взгляд схема оказывается предельно простой, однако тут возникает проблема с питанием компаратора. Заключается она в том, что мы не можем запитать микросхему непосредственно от тех же цепей, которые она должна измерять. Согласно даташиту, максимальное напряжение на входах LM393 не должно быть выше напряжения питания минус два вольта. Если превысить этот порог, компаратор прекращает замечать разницу напряжений на прямом и инверсном входах.

Потенциальных решений возникшей проблемы два. Первое, очевидное, заключается в повышении напряжения питания компаратора. Второе, которое приходит в голову, если немного подумать, заключается в равном понижении управляющих напряжений при помощи двух делителей. Вот как это может выглядеть:

Эта схема подкупает своей простотой и лаконичностью, однако в реальном мире она, к сожалению, не реализуема. Дело в том, что мы имеем дело с разницей напряжений между входами компаратора всего в единицы милливольт. В то же время разброс сопротивлений резисторов даже самого высокого класса точности составляет 0.1%. При минимально приемлемом коэффициенте деления 2 к 8 и разумном полном сопротивлении делителя 10 кОм, погрешность измерения будет достигать 3 mV, что в несколько раз превышает падение напряжения на транзисторе при токе 17 mA. Применение «подстроечника» в одном из делителей отпадает по той же причине, ведь подобрать его сопротивление с точностью более 0.01% не представляется возможным даже при использовании прецизионного многооборотного резистора (плюс не забываем про временной и температурный дрейф). Кроме того, как уже писалось выше, теоретически эта схема вообще не должна нуждаться в калибровке из-за своей почти «цифровой» сущности.

Исходя из всего сказанного, на практике остается только вариант с повышением напряжения питания. В принципе, это не такая уж и проблема, если учесть, что существует огромное количество специализированных микросхем, позволяющих при помощи всего нескольких деталей соорудить stepup-преобразователь на нужное напряжение. Но тогда сложность устройства и его потребление возрастет почти вдвое, чего хотелось бы избежать.

Существует несколько способов соорудить маломощный повышающий преобразователь. Например, большинство интегральных преобразователей предполагают использование напряжения самоиндукции небольшого дросселя, включенного последовательно с «силовым» ключом, расположенным прямо на кристалле. Такой подход оправдан при сравнительно мощном преобразовании, например для питания светодиода током в десятки миллиампер. В нашем случае это явно избыточно, ведь нужно обеспечить ток всего около одного миллиампера. Нам гораздо более подойдет схема удвоения постоянного напряжения при помощи управляющего ключа, двух конденсаторов, и двух диодов. Принцип ее действия можно понять по схеме:

В первый момент времени, когда транзистор закрыт, не происходит ничего интересного. Ток из шины питания через диоды D1 и D2 попадает на выход, в результате чего на конденсаторе C2 устанавливается даже несколько более низкое напряжение, чем поступает на вход. Однако если транзистор откроется, конденсатор C1 через диод D1 и транзистор зарядится почти до напряжения питания (минус прямое падение на D1 и транзисторе). Теперь, если мы снова закроем транзистор, то окажется, что заряженный конденсатор C1 включен последовательно с резистором R1 и источником питания. В результате его напряжение сложится с напряжением источника питания и, понеся некоторые потери в резисторе R1 и диоде D2, зарядит C2 почти до удвоенного Uin. После этого весь цикл можно начинать сначала. В итоге, если транзистор регулярно переключается, а отбор энергии из C2 не слишком велик, из 12 вольт получается около 20 ценой всего пяти деталей (не считая ключа), среди которых нет ни одного намоточного или габаритного элемента.

Для реализации такого удвоителя, кроме уже перечисленных элементов, нам нужен генератор колебаний и сам ключ. Может показаться, что это уйма деталей, но на самом деле это не так, ведь почти все, что нужно, у нас уже есть. Надеюсь, вы не забыли, что LM393 содержит в своем составе два компаратора? А то, что использовали мы пока только один из них? Ведь компаратор – это тоже усилитель, а значит, если охватить его положительной обратной связью по переменному току, он превратится в генератор. При этом его выходной транзистор будет регулярно открываться и закрываться, отлично исполняя роль ключа удвоителя. Вот что у нас получится при попытке реализовать задуманное:

Поначалу идея питать генератор напряжением, которое тот сам фактически и вырабатывает при работе, может показаться довольно дикой. Однако если присмотреться внимательнее, то можно увидеть, что изначально генератор получает питание через диоды D1 и D2, чего ему вполне достаточно для старта. После возникновения генерации начинает работать удвоитель, и напряжение питания плавно возрастает примерно до 20 вольт. На этот процесс уходит не более секунды, после чего генератор, а вместе с ним и первый компаратор, получают питание, значительно превышающее рабочее напряжение схемы. Это дает нам возможность непосредственно измерять разность напряжений на истоке и стоке полевого транзистора и достичь-таки своей цели.

Вот окончательная схема нашего коммутатора:

Пояснять по ней уже нечего, все описано выше. Как видим, устройство не содержит ни одного настроечного элемента и при правильной сборке начинает работать сразу. Кроме уже знакомых активных элементов добавились только два диода, в качестве которых можно использовать любые маломощные диоды с максимальным обратным напряжением не менее 25 вольт и предельным прямым током от 10 mA (например, широко распространенный 1N4148, который можно выпаять из старой материнской платы).

Эта схема была проверена на макетной плате, где доказала свою полную работоспособность. Полученные параметры полностью соответствуют ожиданиям: мгновенная коммутация в оба направления, отсутствие неадекватной реакции при подключении нагрузки, потребление тока от аккумулятора всего 2.1 mA.

Один из вариантов разводки печатной платы тоже прилагается. 300 dpi, вид со стороны деталей (поэтому печатать нужно в зеркальном отражении). Полевой транзистор монтируется со стороны проводников.

Собранное устройство, полностью готовое к монтажу:

Разводил старым дедовским способом, поэтому вышло немного криво, однако тем не менее девайс уже несколько дней исправно выполняет свои функции в цепи с током до 15 ампер без всяких признаков перегрева.

О РАДИАТОРАХ

Теплоотвод (радиатор) для усилителя мощности играет далеко не последнюю роль в его эксплутационных характеристиках, определяя прежде всего надежность усилителя и как правило имеющий свои характеристики. Основными можно назвать пару:
-тепловое сопротивление
-площадь охлаждения.
Если не вдаваться в глубокую физику, то тепловое сопротивление радиатора это есть скорость с которой точка нагрева будет отдавать свое тепло охлаждающим поверхностям - ребрам. Этот параметр учитывается довольно редко, от этого и довольно частые выходы из строя самодельных усилителей. На рисунке 18 показаны схематично процессы нагрева теплоотвода от фланца силового транзистора.

Рисунок 18 Распространение тепла внутри несущего основания теплоотвода.

При толщине несущего основания 3 мм тепло от фланца довольно быстро достигает тыльной стороны и далее распространаяется довльно медленно, поскоьку толщина материала слишком мала. В результате происходит довольно большой местный нагрев, а охлаждающие плоскости (ребра) остаются холодными. При толщине несущего основания 8 мм тепло от фланца уже достигает обратной стороны радиатора гораздо медленней, поскольку необходимо прогреть участки радиатора в горизонтальной плоскости. Таким обюразом нагрев происходит более равномерно и охлаждающие плоскости начинают прогреваться более равномерно.
Можно было бы конечно выкопать кучу формул и выложить их здесь, но это слишком "тяжелая" математика, поэтому остановимся лишь на приблизительных результатах расчетов.
Толщина несущего основания для усилителй АВ должна составлять 1 мм на каждые 10 Вт выходной мощности усилителя, но не менее 2 мм. При мощностях свыше 100 Вт толщина несущего основания должна быть не менее 9 мм + 1 мм на каждые 50 Вт превышающие 100 Вт. Для усилителей мощности с многоуровневым питанием (G и H) толщину несущего основания следует расчитывать аналогичными образом, но в качестве исходной мощности следует брать мощность усилителя деленную на количество уровней питания.

МОЩНОСТЬ
УСИЛИТЕЛЯ

ТОЛЩИНА
НЕСУЩЕГО
ОСНОВАНИЯ

КАК РАСЧИТАНА

КЛАСС
АВ

МИНИМУМ
40 Вт / 10 = 4 мм
40 Вт / 10 = 6 мм
150 Вт - 100 Вт = 50 Вт превышение 100 Вт предела, следовательно 9 мм + 1 мм = 10 мм
300 Вт - 100 Вт = 200 Вт превышения 100 Вт предела, следовательно 9 мм + (200 / 50) = 9 мм + 4 мм = 13 мм
600 Вт - 100 Вт = 500 Вт превышения 100 Вт предела, следовательно 9 мм + (500 / 50) = 9 мм + 10 мм = 19 мм
900 Вт - 100 Вт = 800 Вт превышения 100 Вт предела, следовательно 9 мм + (800 / 50) = 9 мм + 16 мм = 25 мм

КЛАСС
G ИЛИ H
ПИТАНИЕ
2 УРОВНЯ

500 / 2 = 250 Вт - максимальная мощность выделяемая одним уровнем, 250 - 100 = 150 - разница между базовыми 100Вт, 150 / 50 = 3 - дополнительная толщина к базовым 9 мм, 9 +3 = 12 мм толщина несущего основания радиатора.
1000 / 2 = 500, 500 - 100 = 400, 400 / 50 = 8, 9 + 8 = 17 мм
2000 / = 1000, 1000- 100 = 900, 900 / 50 = 18, 9 + 18 = 27 мм

Ступенчатость в расчетах при мощностях свыше 100 Вт связана с тем, что в таких усилителях уже используется по несколько соединенных параллельно транзисторах, которые рассеивают тепло равномерно в разных местах несущего основания радиатора. Для классов G и H мощность делится на 2 потому что именно из за меняющегося напряжения питани (подключение второго уровня) происходит уменьшение выделяемой мощности, кторая рассеивается только при достижении уровня исгнала определеннйо величины.
Площадь охлаждения расчитывается чисто математически, измерив основные размеры радиатора - рисунок 19


Рисунок 20 Расчет площади охлаждения теплоотвода

В данной формуле:
а - толщина несущего основания, удваивается, поскольку имеет контакт с охлаждающей средой (воздухом в данном случае) с двух сторон;
б и г - по сути высота ребра, используется обе стороны, поскольку обе имеют контакт с охлаждающей средой;
в - Ширина верхушки ребра, можно принебречь;
д -расстояние между ребрами радиатора;
е - длина обратной стороны радиатора;
n - количество ребер на радиаторе;
h - высота радиатора.
Крепежные выступы и дополнительные отливы тоже можно посчитать, но как правило их площадь ничтожно мала по отношению к основной, поэтому ею можно принебречь. В данной формуле так же не учитываются площади торцов ребер.

Площадь радиатора расчитывается исходя из мощности усилителя и опуская формулы может быть определена по таблице:

МОЩНОСТЬ
УСИЛИТЕЛЯ, Вт

ПЛОЩАДЬ РАДИАТОРА ПРИ
ХОРОШИХ УСЛОВИЯХ
ОХЛАЖДЕНИЯ, кв см
РАДИАТОРЫ СНАРУЖИ
КОРПУСА, РЕБРА
РАСПОЛОЖЕНЫ ВЕРТИКАЛЬНО

ПЛОЩАДЬ РАДИАТОРА ПРИ
ПЛОХИХ УСЛОВИЯХ
ОХЛАЖДЕНИЯ, кв см
РАДИАТОРЫ ВНУТРИ КОРПУСА
ИЛИ ЭТО АВТОМОБИЛЬНЫЙ
УСИЛИТЕЛЬ

КЛАСС АВ
КЛАСС G
КЛАСС H

Пугаться огромных площадей охлаждения не следует, поскольку алюминиевый лист 10 х 10 см и толщиной 0,5 см имеет суммарную площадь охлаждения 10 х 10 = 100 кв см, стороны две, следовательно 100 х 2 = 200 кв см, плюс 4 торцевых стороны с площадью 0,5 х 10 = 5 добавлляет еще 20 кв см и в результате получаем 200 + 20 = 220 см, а радиатор показанный на рисунке 27 (габариты 17 х 5,5 х 11,5 см) имеет площадь охлаждения 3900 кв см, тем более в расчеты заложен нарев радиатора до 80 градусов при воспроизведении самых жестких композиций.
Тут же следует дать ответ на вопрос А ПОЧЕМУ ДЛЯ КЛАССОВ G и H ПЛОЩАДЬ РАДИАТОРОВ ПОЧТИ В ДВА РАЗА МЕНЬШЕ И ПОЧЕМУ НА G МЕНЬШЕ ЧЕМ НА H ?
Для получения более понятного ответа стоит вернуться к сериалу рисунков 7-13 и еще раз перечитать - максимальная мощность рассеивается только в моменты выходной сигнал проходит амплитудногое значение равное половине напряжения питания, в остальные моменты она или растет или уменьшается. При питании двумя уровнями рассеиваемая мощность увеличитвается пока не достигнет половины величины питания первого "этажа", затем уменьшается и дойдя до величины равной почти питанию первого "этажа" снова начинает увеличиваться до максимума, поскольку ступенчато включается второй этаж питания (класс H), а он по величине больше первого "этажа" в 2 раза. Однако после включение второго "этажа" мощность по мере роста велечины выходного сигнала уменьшается. Следовательно за один полупериод синусоидального сигнала оконечные транзисторы будут дважды рассеивать макисмальную мощность, но она превысит величину по сравнению с классом АВ лишь на несколько процентов. Для класса G процессы нагрева несколько отличаются от H, поскольку подключение второго "этажа" питания происходит не ступенчато, а плавно и рассевиваема мощность оконечных транзисторов распределяется, правда не равномерно - втрому "этажу" приходится тяжелей первого. Пока амплитуда выходного сигнала не достигла велечины включения второго этажа оконечные транзисторы работают в обычном режиме, а когда второй этаж включается в работу они мощность рассеивают, но уже не значительную, поскольку как правило закладываемая разница между первым и вторым этажом составляет 15-18 В. В при включеннии транзисторов второго этажа наибольшую мощность рассеивают именно они и происходит это в момент их включения, а по мере роста амплитуды выходного исгнала расеиваемая мощность уменьшается. Другими словами площадь охлаждения усилителей G меньше чем H как раз за счет того, что тепловыденеие происходит в разных местах радиатора - пока работает первый этаж - греются одни транзисторы, как только включается второй этаж они начинают остывать, а греются уже другие транзисторы, расположенные в другом месте радиатора.
Если радиатора с подходящей площадью охлаждения нет, то можно воспользоваться принудительным охлаждением, установив на радиаторы вентиляторы от компьтерной техники (рисунок 21).


Рисунок 21 Внешний вид компьтерных вентиляторов

При покупке вентилятров следует обратить внимание на надписи на его наклейки. Кроме производителя на вентиляторах указывается напряжение и потребляемый ток, который как раз и определяет производительность вентилятора. На рисунке 22 слева безшумный тихоход (ток 0,08А), который почти не слышно, но и который дает довольно слабый охлаждающий поток, а справа - гудящий ветродув (ток потребления 0,3А). Рекомендуется для усителей мощности использовать высокопроизводительные вентиляторы, поскольку уменьшить производительность можно всегда уменьшив обороты вращения (уменьшить напряжение питания), а вот увеличить получается не всегда, а если точнее - очень редко. Нескольк вариантов управления вентиляторам можно .


Рисунок 22 Слева малопроизводительный безшумный, справа высокопроизводительный гудящий.

При выборе вентилятора кроме производительности следует определиться с размерами, поскольку размеров на рынке уже достаточно много, да и наработка на отказ у всех разная, поскольку некоторые проиводители используют подшипники скольжения (вал крыльчатки вращается во вкладышах из порошковой бронзы), а некоторые используют шарико-подшипники, которые конечно же работают гораздо дольше и меньше подвержены забиванию пылью.
Вариантов обдува может быть несколько, для примера расмотрим два, самых популярных.
Первый, по сути широко используемый в компьютерной технике, вариант, когда вентилятор устанавнивается со стороны ребер, причем воздушный поток направляется как раз между ребер охлаждения (рис 23).


Рисунок 23 Установка вентилятора со стороны ребер радиатора

Менее популярный среди компьютерной техники, но достаточно популярный среди промаппаратуры способ трубы. В этом варианте два радиатора разворачиваются ребрами друг к другу, а воздушный поток направляется между ребрами вентилятором расположенным с торца радиаторов (рис 24).


Рисунок 24 Сборка аэротрубы из двух одинаковых радиаторов.

Этот вариант для аудиотехники несколько предпочтительней, поскольку одним вентилятором может "продуваться" довольно длинный радиатор, при расположении на одном радиаторе транзисторов n-p-n структуры, а на другом - p-n-p можно обойтись без электроизолирующих прокладок, что уменьшит тепловое сопротивление между корпусом транзистора и радиатором. Разумеется радиаторы будет необходимо изолировать от корпуса и этот способ приемлем для усилителей в качестве выходного каскада которых используются эмиттерные повторители (ЛАНЗАР , , ХОЛТОН)
Кстати сказать - используемые в компьтерах радиаторы для процессоров расчитаны на принудительное охлаждение и не смотря на то, что имеют достаточно большие площади охлаждения использование без вентиляторов не желательно. Дело в том, что расстояние между ребрами радиатора ОЧЕНЬ мало и естественная циркуляция воздуха затруднена в следствии чего теплоотдача падает практически в 2,5...3 раза. Используя же вентилятор с током потребления 0,13А один радиатор от процессора P-IV вполне справляется с теплом от двух установленных на него усилителях СТОНЕКОЛД с выходной мощностью 140 Вт каждый.

Подводя итоги всего выше сказанного можно сделать выводы:
-при выборе радиатора следует обращать внимание не только на площадь охлаждения, но и на толщину несущего основания;
-усилители мощности с двухуровневым питанием греются почти в 2 раза меньше усилителей класса АВ при одинаковых выходных мощностях;
-при недостатке площади охлаждения мощно использовать принудительное охлаждение (вентиляторы) с регулируемой производительностью.

О ТРАНЗИСТОРАХ НА РАДИАТОРАХ

Даже если и транзисторы будут верно выбраны и площадь радиатора будет правильно расчитана остается еще одна проблема - правильно установить транзисторы на радиатор.
Прежде всего слеует обратить внимание на поверхность радиатора в месте установки транзисторов или микросхем - там не должно быть лишних отверстий, поверхность должна быть ровной и не покрыта краской. В случае, если поверхность радиатора покрыта краской ее необходимо удалить наждачной бумагой, причем по мере удаления краски зернистость бумаги должна уменьшаться и когда следов краски уже не останется необходимо еще некоторое время полировать поверхность уже мелкой наждачной бумагой.
В качестве держателя наждачной бумаги довольно удобно использовать специальные насадки для отрезной машины (болгарки) или же воспользоваться шлифовальной машиной. Возможные варианты насадок показаны на рисунках.


Рисунок 25 Такой диск хорошо использовать для удаления старой краски, выравнивания поверхности
радиатора в местах удаления "не нужных ребер", "черновой" шлифовки.
Во время обработки радиатор обязательно закрепить в тисках подходящего размера
.


Рисунок 26 Такую насадку хорошо использовать для "чистовой" шлифовки, причем использование отрезной машины не желательно - аллюминий "залипает" в наждачной бумаге и удержать машину в руках очень сложно - можно травмироваться. Форма самой насадки довольно удобно распологается в руке и ручная шлифовка не доставляет неудобств, а если в имеющуюся в насадке ввернуть винт и обмотать его изолентой - работа будет в радость.

При необходимости удалить лишь часть ребер радиатора отрезным кругом делают прорезь до несущего основания, затем делаются надрезы ребер у основания отрезным кругом малого диамера и "лишние" фрагменты отламываются. После этого, закрепив радиатор в тисках, либо крупным напильником, либо шлифовальным кругом (от отрезного он отличается гораздо большей толщиной) места отлома ребер сравнять с поверхностью несущего основания. Затем подготавливается шлифовальный инструмент. Для его изготовлнеия используется деревянный брус с ровной поверхностью. Ширина бруса должна быть немного меньше ширины удаленных ребер, а высота примерно в 2 раза больше высоты удаленных ребер - так его будет удобней держать в руке). Затем на обе "рабочие" строны бруса клеяться полоски из резины (можно приобрести бинт-резину в аптеке или кусок автомобильной камеры в будках вулканизации). Резина не должна быть натянута, используемый клей предназначен для резины или иметь полиуретановую основу. Затем на одну сторону бруса приклеевается крупнозернистая наждачная бумага для черновой шлифовки, на другую - мелкозернистая для "чистовой". Таким образом получается двухсторонее шлифовальное приспособление позволяющее довольно быстро произвести шлифовку поверхности радиатора без особых усилий. Если использовать наждачку на бумажной основе, продающуюся в автомагазинах, ее потребуется несколько больше - она забтвается интенсивней, чем та, которая продается в хозяйственных магазинах (на трапочной основе), однако в автомагазинах гораздо больший выбор по зернистости - начиная от довольно крупного зерна, до шлифовальной "нулевки".


Рисунок 27 Радиатор от "древней" телефонной станции подготовлен для установки двух усилителей УМ7293
Длина радиатора 170 мм, площадь охлаждения 4650 кв см - расчетная величина для суммарной мощности 150 Вт (2 х 75) составляет 3900 кв см.

Двольно часто приходится крепить транзисторы на радиаторы через изолирующие прокладки. Вырезать слюду не проблема, а вот с изорированным крепежом довольно часто возникают недоразумения. Корпуса транзисторов ТО-126, ТО-247, TO-3PBL (TO-264) конструктивно выполнены так, что изолированный крепеж н нужен - внутри корпса, в крепежном отверстии электрического контакта с фланцем не произойдет. А вот корпуса ТО-220, ТО-204АА без изолированного крепежа не обойдутся.
Выйти из положенияможно изготовиви такой крепеж самостоятельно, используюя обычные винты и шайбы (рис 28-а). На винт, возле головки наматываются нитки (желательно хлопчато-бумажные, но найти их на сегодня довольно не просто). Длина намотки не должна превышать 3,5 мм, увеличение диаметра не должно быть больше 3,7 мм (рис 28-б). Далее нитки пропитываются СУПЕРКЛЕЕМ, желательно СЕКУНДА или СУПЕРМОМЕНТ. Смачиватьт нтки следует аккуратно, чтобы клей не попал на находящуюуся рядом резьбу.
Пока клей подсыхает необходимо сделать "кондуктор" - приспособление, которое позволит нормировать высоту изоляционного вкладыша, находящегоя внутри фланца транзистора. Для это необходимо в пластмассовой, алиминиевой или текстолитовой детале (толщина заготовки не менее 3 мм, максиму не пренципиален, но более 5 мм брать смысла не имеет) просверлить отверстие, желательно на сверлильном станке (так угол по отношению к плоскости заготовки получится ровно 90°, что не маловажно), диаметром 2,5 мм. Затем на глубину 1,2...1,3 мм сверлится углубление диаметром 4,2 мм, углубления желательно сверлить в ручную, чтобы не перестараться с глубиной. Затем в отверстии 2,5 мм нарезается резьба М3 (рис 28-в).


Рисунок 28

Затем на винт одевается шайба и он закручивается в "кондуктор" до упора проклеенных ниток внутри углубления, шайьа укладывается на плоскость заготовки и голкой наноситься СУПЕРКЛЕЙ в места соприкосновения винта и шайбы по всему периметру соприкосновения (рис 29-а). Как только клей высохнет на получившийся желобок наматываются нитки, время от времени смачиваемые СУПЕРКЛЕЕМ до выравнивания ниток с диаметром головки винта, в идеале ниок возле шайбы должно быть немного больше, т.е. получившийся пластиковый вкладыш будет иметь форму усеченного конуса (рис 29-б). Как только клей высохнет, а для этого потребуется примерно мнут 10 (внутри намотки клей сохнет медленней) винт можно выкручивать (рис 29-в) и устананавливать транзистор на радиатор (рис 30) не забыв обработать фланец транзистора и место установки на радиаторе термопроводной пастой, например КПТ-8. Кстати сказать, на нескольких сайтах по разгону процессоров IBM проводились тесты на теплопроводность различных термопаст - КПТ-8 устойчиво везде фигурирует на вторых местах, а с учетом того, что она стоит в разы дешевле победителей, то получается лидером в пропорции цена-качество.


Рисунок 29


Рисунок 30 Крепление транзистора ТО-220 с помощью самодельного изолирующего винта.

Корпуса транзисторов тиа ТО-247 на радиатор можно устанавливать используюя имеющиеся в них отверстия, причем изолирующий крепеж не нужен, однако при сборке усилителей больших мощностей сверлить и нарезать резьбу в толстом несущем основании довольно утомительно - при четырех парах оконечников надо подготовить 8 отверстий и это только усилитель на 400-500 Вт. Тем более и силумин, и дюралюминий и уж тем более алюминий даже при сверлении налипают на режущую кромку, что приводит к поломке сверла, ну а сколько сломано метчиков при нарезании резьбы лучше не упоминать вообще.
Поэтому иногда проще испольховать дополнительные планки, которые будут прижимать сразу ВСЕ транзисторы оодной структуры, а в качестве крепежа использовать более толстые саморезы и их потребуется значительно меньшею Один из вариантов крепления показан на рисунке 31. как видно из фото 6 транзисторов прижимаются всего треми саморезами и усилие значительно больше, если бы каждый из них прижимался свои винтом. В случае ремонта (не дай Бог, конечно) и откручивать будет намного проще.


Рисунок 31 Крепление транзисторов к радиатору с помощью планки.

Смысл прижимного усилия заключается в том, что закручивая саморез по металлу (используется для крепления листового железа, продается во всех хозяйственных магазинах, резину с шайбы лучше удалить сразу - ее все равно разорвет) планка одной строной упирается в винт М3 с прокладками из винтов М4. Суммарная высота этой конструкции получается немного больше толщины корпуса транзистора, буквально на 0,3...0,8 мм, что приводит к небольшому перекосу планки и своим вторым краем она прижимает транзистор в середине корпуса.
Поэтому при при выборе планки ее ширина должна быть вырана из расчета:
- от края до середины отверстия с винтом М3 3-4 мм
- от середины отверстия с винтом М3 до середины отверстия с саморезом 6-7 мм
- от середины отверстия под саморез до края транзистора 1-2 мм
- от кра транзисора до середины его корпуса ±2 мм.
Ширина планки в мм не указывается преднамеренно, поскольку таким способом можно крепить транзисторы практически в любых корпусах.
Планку можно изготовить из стеклотекстолита, полоски которого как правило валаяются у радиолюбителей. При толщине текстолита 1,5 мм для крпеления корпусов ТО-220 текстолит необходимо сложить в трое, при креплении корпусов ТО-247 - в четверо, при креплении корпусов ТО-3PBL - в пятеро. Текстолит очищается от фольги, если фольгирован, причем хоть механическим способом, хоть травлением. Затем зачищается самой крупной наждачной бумагой и склеивается эпоксидным клеем, желательно Дзержинского производства. После того, как плоскости были зашкурены и промазаны клеем полоски складывают и ложат под пресс или зажимают в тиски, учитывая то, что излишки клея все таки будут куда то капать, то лучше место вероятных капель защить положим туда целофановый пакет, который потом можно выкинуть.
Полимеризоваться клей должен не менее суток при комнетной температуре, ускорять полимеризацию путем увеличения отверлителя не стоит - клей приобретает хрупкость, а вот прогревание наоборот - уменьшают время затвердивания клея без изменений физических свойств клея. Прогревать можно обычным феном, если нет сушильного шкафа.
Желательно придать планке дополнительнуюжесткость с однйо стороны вертикально сложенные в двое дополнительные полоски текстолита.
После высыхания эпоксидного клея, в месте механического контакта планки с корпусом транзистора необходимо наклеить сложенную в трое-четверо полоску альбомной бумаги (ширина получившейся полоски 5-8 мм, в зависимости от корпуса транзистора), предварительно промазав всю заготовку полиуретановым клеем (ТОП-ТОП, МОМЕНТ-КРИСТАЛ). Данная прослойка из бумаги придаст необходиму для равномерного прижатия эластичность не уменьшив усилия придавливания корпуса к радиатору (рис 32).
В качестве материала для прижимной планки может быть использован не только стеклотекстолит, то и уголок или дюралюминиевый профиль или другой, достаточно крепкий материал.


Рисунок 32

Небольшой технологический совет - не смотра на то, что саморезы имеют форму сверла и при крепелнии листового железа не требуют засверливания при сверлении радиатора, в местах закручивания самореза, лучше просверлить отверстия диаметром 3 мм, поскольку толщина алюминия намного больше материала, под который расчитаны данные саморезы и алюминий довольно сильно залипает на режущей кромку (вы может просто свернуть головку при попытке без сверления закрутить саморезх в алюминий или силумин).
Использование крепежных планок можно производить и при установке на радиатор "разнокаллиберных" транзисторов" используя небольшие утолшения планки в местах контакта с более тонкими корпусами, а учитывая то, что более тонки транзисторы и греются как правило меньше, то недостаток толщины можно компенсировать солженным в несколько слоев двухсторонним скотчем из пористой резины.
Остался еще один не решенный вопрос - мощность блока питания, но об этом
Теперь надеемся, что самодельные усилители мощности будут умирать значительно реже....

Страница подготовлена по материалам ОГРОМНОГО количества сайтов о теплотехнике, аудиотехнике, сайтов о разгонах процессоров компьютеров и способах охлаждения, путем замеров и сравнений заводских вариантов усилителй мощности, использовались сообщения и переписки посетителей форумов ПАЯЛЬНИК и НЕМНОГО ЗВУКОТЕХНИКИ.

= ([Температура в горячей точке, грЦ ] - [Температура в холодной точке, грЦ ]) / [Рассеиваемая мощность, Вт ]

Это означает, что если от горячей точки к холодной поступает тепловая мощность X Вт, а тепловое сопротивление составляет Y грЦ / Вт, то разница температур составить X * Y грЦ.

Формула для расчета охлаждения силового элемента

Для случая расчета теплоотвода электронного силового элемента то же самое можно сформулировать так:

[Температура кристалла силового элемента, грЦ ] = [Температура окружающей среду, грЦ ] + [Рассеиваемая мощность, Вт ] *

где [Полное тепловое сопротивление, грЦ / Вт ] = + [Тепловое сопротивление между корпусом и радиатором, грЦ / Вт ] + (для случая с радиатором),

или [Полное тепловое сопротивление, грЦ / Вт ] = [Тепловое сопротивление между кристаллом и корпусом, грЦ / Вт ] + [Тепловое сопротивление между корпусом и окружающей средой, грЦ / Вт ] (для случая без радиатора).

В результате расчета мы должны получить такую температуру кристалла, чтобы она была меньше максимально допустимой, указанной в справочнике.

Где взять данные для расчета?

Тепловое сопротивление между кристаллом и корпусом для силовых элементов обычно приводится в справочнике. И обозначается так:

Пусть Вас не смущает, что в справочнике написаны единицы измерения K/W или К/Вт. Это означает, что данная величина приведена в Кельвинах на Ватт, в грЦ на Вт она будет точно такой же, то есть X К/Вт = X грЦ/Вт.

Обычно в справочниках приведено максимально возможное значение этой величины с учетом технологического разброса. Она нам и нужно, так как мы должны проводить расчет для худшего случая. Для примера максимально возможное тепловое сопротивление между кристаллом и корпусом силового полевого транзистора SPW11N80C3 равно 0.8 грЦ/Вт,

Тепловое сопротивление между корпусом и радиатором зависит от типа корпуса. Типичные максимальные значения приведены в таблице:

TO-3 1.56
TO-3P 1.00
TO-218 1.00
TO-218FP 3.20
TO-220 4.10
TO-225 10.00
TO-247 1.00
DPACK 8.33

Изоляционная прокладка. По нашему опыту правильно выбранная и установленная изолирующая прокладка увеличивает тепловое сопротивление в два раза.

Тепловое сопротивление между корпусом / радиатором и окружающей средой . Это тепловое сопротивление с точностью, приемлемой для большинства устройств, рассчитать довольно просто.

[Тепловое сопротивление, грЦ / Вт ] = [120, (грЦ * кв. см) / Вт ] / [Площадь радиатора или металлической части корпуса элемента, кв. см ].

Такой расчет подходит для условий, когда элементы и радиаторы установлены без создания специальных условий для естественного (конвекционного) или искусственного обдува. Сам коэффициент выбран из нашего практического опыта.

Спецификация большинства радиаторов содержит тепловое сопротивление между радиатором и окружающей средой. Так что в расчете надо пользоваться именно этой величиной. Рассчитывать эту величину следует только в случае, если табличных данных по радиатору найти не удается. Мы часто для сборки отладочных образцов используем б/у радиаторы, так что эта формула нам очень помогает.

Для случая, когда отвод тепла осуществляется через контакты печатной платы, площадь контакта также можно использовать в расчете.

Для случая, когда отвод тепла через выводы электронного элемента (типично диодов и стабилитронов относительно малой мощности), площадь выводов вычисляется, исходя из диаметра и длины вывода.

[Площадь выводов, кв. см. ] = Пи * ([Длина правого вывода, см. ] * [Диаметр правого вывода, см. ] + [Длина левого вывода, см. ] * [Диаметр левого вывода, см. ])

Пример расчета отвода тепла от стабилитрона без радиатора

Пусть стабилитрон имеет два вывода диаметром 1 мм и длиной 1 см. Пусть он рассеивает 0.5 Вт. Тогда:

Площадь выводов составит около 0.6 кв. см.

Тепловое сопротивление между корпусом (выводами) и окружающей средой составит 120 / 0.6 = 200.

Тепловым сопротивлением между кристаллом и корпусом (выводами) в данном случае можно пренебречь, так как оно много меньше 200.

Примем, что максимальная температура, при которой будет эксплуатироваться устройство, составит 40 грЦ. Тогда температура кристалла = 40 + 200 * 0.5 = 140 грЦ, что допустимо для большинства стабилитронов.

Онлайн расчет теплоотвода - радиатора

Обратите внимание, что у пластинчатых радиаторов нужно считать площадь обеих сторон пластины. Для дорожек печатной платы, используемых для отвода тепла, нужно брать только одну сторону, так как другая не контактирует с окружающей средой. Для игольчатых радиаторов необходимо приблизительно оценить площадь одной иголки и умножить эту площадь на количество иголок.

Онлайн расчет отвода тепла без радиатора

Несколько элементов на одном радиаторе.

Если на одном теплоотводе установлено несколько элементов, то расчет выглядит так. Сначала рассчитываем температуру радиатора по формуле:

[Температура радиатора, грЦ ] = [Температура окружающей среды, грЦ ] + [Тепловое сопротивление между радиатором и окружающей средой, грЦ / Вт ] * [Суммарная мощность, Вт ]

[Температура кристалла, грЦ ] = [Температура радиатора, грЦ ] + ([Тепловое сопротивление между кристаллом и корпусом элемента, грЦ / Вт ] + [Тепловое сопротивление между корпусом элемента и радиатором, грЦ / Вт ]) * [Мощность, рассеиваемая элементом, Вт ]

Нередко, проектируя мощное устройство на силовых транзисторах, или прибегая к использованию в схеме мощного выпрямителя, мы сталкиваемся с ситуацией, когда необходимо рассеивать очень много тепловой мощности, измеряемой единицами, а иногда и десятками ватт.

К примеру IGBT-транзистор FGA25N120ANTD от Fairchild Semiconductor, если его правильно смонтировать, теоретически способен отдать через свой корпус порядка 300 ватт тепловой мощности при температуре корпуса в 25 °C! А если температура его корпуса будет 100 °C, то транзистор сможет отдавать 120 ватт, что тоже совсем немало. Но для того чтобы корпус транзистора в принципе смог отдать это тепло, необходимо обеспечить ему надлежащие рабочие условия, чтобы он раньше времени не сгорел.

Все силовые ключи выпускаются в таких корпусах, которые можно легко установить на внешний теплоотвод - радиатор. При этом в большинстве случаев металлическая поверхность ключа или другого устройства в выводном корпусе, электрически соединена с одним из выводов данного устройства, например с коллектором или со стоком транзистора.

Так вот, задача радиатора как раз и состоит в том, чтобы удержать транзистор, и главным образом его рабочие переходы, при температуре, не превышающей максимально допустимую.

Андрей Повный