Рбмк 1000 размеры. Рбмк реактор большой мощности канальный. Металлоконструкция схемы «Г»

Министерство образования и науки Российской Федерации Национальный исследовательский ядерный университет «МИФИ» Обнинский институт атомной энергетики

А.С. Шелегов, С.Т. Лескин, В.И. Слободчук

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ И КОНСТРУКЦИЯ РЕАКТОРА РБМК-1000

для студентов высших учебных заведений

Москва 2011

УДК 621.039.5(075) ББК 31.46я7 Ш 42

Шелегов А.С., Лескин С.Т., Слободчук В.И. Физические особенности и конструкция реактора РБМК-1000: Учебное пособие. М.: НИЯУ МИФИ, 2011, – 64 с.

Рассмотрены принципы физического проектирования, критерии обеспечения безопасности и особенности конструкции ядерного энергетического реактора типового проекта РБМК-1000. Описаны конструкция тепловыделяющих сборок и топливных каналов активной зоны, принципы и средства управления реакторной установкой.

Изложены основные особенности физики и теплогидравлики реактора РБМК-1000.

Пособие содержит основные технические характеристики реакторной установки, системы управления и защиты реактора, а также тепловыделяющих элементов и их сборок.

Представленная информация может быть использована только для обучения и предназначена для студентов специальности 140404 «Атомные электростанции и установки» при освоении дисциплины «Ядерные энергетические реакторы».

Подготовлено в рамках Программы создания и развития НИЯУ МИФИ.

Рецензент д-р физ.-мат. наук, проф. Н.В. Щукин

Введение

Создание атомных электростанций с канальными уранграфитовыми реакторами РБМК − национальная особенность развития отечественной энергетики. Основные характеристики энергоустановок выбирались таким образом, чтобы в максимальной степени использовать опыт разработки и сооружения промышленных реакторов, а также возможности машиностроительной промышленности и строительной индустрии. Использование одноконтурной схемы реакторной установки с кипящим теплоносителем позволяло применить освоенное тепломеханическое оборудование при относительно умеренных теплофизических параметрах.

Первый советский промышленный уран-графитовый реактор введен в эксплуатацию в 1948 г., а в 1954-м в Обнинске начал функционировать демонстрационный уран-графитовый водоохлаждаемый реактор первой в мире АЭС электрической мощностью 5 МВт.

Работы над проектом нового реактора РБМК были развернуты в ИАЭ (ныне РНЦ КИ) и НИИ-8 (ныне НИКИЭТ им. Н.А. Доллежа-

ля) в 1964 г.

Идея создания канального кипящего энергетического реактора большой мощности была организационно оформлена в 1965 г. Было принято решение о разработке технического проекта канального кипящего энергетического реактора мощностью 1000 МВт (эл.) по техническому заданию Института атомной энергии им. И.В. Курчатова (заявка на способ выработки электроэнергии и реактор РБМК-1000 с приоритетом от 6 октября 1967 г. была подана сотрудниками ИАЭ). Проект первоначально получил название Б-19), а его конструирование сначала было поручено конструкторскому бюро завода «Большевик».

В 1966 г. по рекомендации НТС министерства работа над техническим проектом реактора большой мощности канального кипящего РБМК-1000 была поручена НИКИЭТ. Постановлением Совета Министров СССР № 800-252 от 29 сентября 1966 г. было принято решение о строительстве Ленинградской АЭС в поселке Сосновый Бор Ленинградской области. В этом постановлении были определены основные разработчики проекта станции и реактора:

кАЭ − научный руководитель проекта; ГСПИ-11 (ВНИПИЭТ) − генеральный проектировщик ЛАЭС; НИИ-8 (НИКИЭТ) − главный конструктор реакторной установки.

На IV Женевской конференции ООН в 1971 г. Советский Союз объявил о решении построить серию реакторов РБМК электрической мощностью 1000 МВт каждый. Первые энергоблоки были введены в эксплуатацию в 1973 и 1975 гг.

ГЛАВА 1. Некоторые аспекты концепции безопасности реакторов РБМК

1.1. Основные принципы физического проектирования

Концепция развития канальных уран-графитовых реакторов, охлаждаемых кипящей водой, основывалась на конструкторских решениях, проверенных практикой эксплуатации промышленных реакторов, и предполагала реализацию особенностей физики РБМК, которые в совокупности должны были обеспечить создание безопасных энергоблоков большой единичной мощности с высоким коэффициентом использования установленной мощности и экономичным топливным циклом.

В числе аргументов в пользу РБМК выдвигались преимущества, обусловленные лучшими физическими характеристиками активной зоны, в первую очередь лучший баланс нейтронов, обусловленный слабым поглощением графита, и возможность достичь глубокого выгорания урана благодаря непрерывным перегрузкам топлива. Расход природного урана на единицу выработанной энергии, в то время считавшийся одним из главных критериев экономичности, оказывался примерно на 25 % ниже, чем в ВВЭР.

От первоначального представления, что физические проблемы РБМК не требуют существенной корректировки развитых методов физических исследований промышленных реакторов, а связаны лишь с использованием в качестве основного конструкционного материала активной зоны циркония вместо алюминия, почти сразу пришлось отказаться. Уже первые оценки нейтронно-физических (и теплофизических) характеристик показали необходимость решения большого круга задач по оптимизации физических параметров реактора и разработки методического и программного обеспечения:

Основными проблемами при определении оптимальных физических характеристик РБМК являются безопасность и экономичность топливного цикла. Ядерная безопасность реактора обеспечивается возможностями контроля и управления реактивностью во всех режимах эксплуатации, что требует определения безопасных диапазонов изменения эффектов и коэффициентов реактивности. Особенно важны физические характеристики, которые обусловливают пассивную безопасность реакторной установки, как в

условиях нормальной эксплуатации, так и в аварийных и переходных режимах. Не менее важны характеристики, обеспечивающие ядерную безопасность, – это эффективность и быстродействие рабочих органов СУЗ, которые обеспечивают заглушение и удержание его в подкритическом состоянии.

Технико-экономические показатели работы реакторной установки также в значительной мере определяются такими физическими характеристиками, как выгорание и нуклидный состав выгружаемого топлива, удельные расходы природного и обогащенного урана и ТВС на единицу выработанной электроэнергии и компоненты баланса нейтронов в активной зоне.

1.2. Основные принципы и критерии обеспечения безопасности

Основным принципом обеспечения безопасности, положенным в основу проекта реакторной установки РБМК-1000, является не превышение установленных доз по внутреннему и внешнему облучению обслуживающего персонала и населения, а также нормативов по содержанию радиоактивных продуктов в окружающей среде при нормальной эксплуатации и рассматриваемых в проекте авариях.

Комплекс технических средств обеспечения безопасности реакторной установки РБМК-1000 осуществляет выполнение функций:

надежного контроля и управления энергораспределением по объему активной зоны;

диагностики состояния активной зоны для своевременной замены потерявших работоспособность конструктивных элементов;

автоматического снижения мощности и останова реактора в аварийных ситуациях;

надежного охлаждения активной зоны при выходе из строя различного оборудования;

аварийного охлаждения активной зоны при разрывах трубопроводов циркуляционного контура, паропроводов и питательных трубопроводов.

обеспечения сохранности конструкций реактора при любых исходных событиях;

оснащения реактора защитными, локализующими, управляющими системами безопасности и отвода выбросов теплоносителя при разгерметизации трубопроводов из реакторных помещений в систему локализации;

обеспечения ремонтопригодности оборудования в процессе эксплуатации реакторной установки и при ликвидации последствий проектных аварий.

В процессе проектирования первых реакторных установок РБМК-1000 был сформирован перечень исходных аварийных событий и проанализированы наиболее неблагоприятные пути их развития. На основе опыта эксплуатации РУ на энергоблоках Ленинградской, Курской и Чернобыльской АЭС и по мере ужесточения требований к безопасности АЭС, которое имеет место

в мировой энергетике вообще, первоначальный перечень исходных событий значительно расширен.

Перечень исходных событий применительно к реакторным установкам РБМК-1000 последних модификаций включает более 30 аварийных ситуаций, которые могут быть разделены на четыре основных принципа:

1) ситуации с изменением реактивности;

2) аварии в системе охлаждения активной зоны;

3) аварии, вызванные разрывом трубопроводов;

4) ситуации с отключением или отказом оборудования.

В проект реакторной установки РБМК-1000 при анализе аварийных ситуаций и разработке средств обеспечения безопасности заложены в соответствии с ОПБ-82 следующие критерии безопасности:

1) в качестве максимальной проектной аварии рассматривается разрыв трубопровода максимального диаметра с беспрепятственным двухсторонним истечением теплоносителя при работе реактора на номинальной мощности;

2) первый проектный предел повреждения твэлов для условий нормальной эксплуатации составляет: 1 % твэлов с дефектами типа газовой неплотности и 0,1 % твэлов с прямым контактом теплоносителя и топлива;

3) второй проектный предел повреждения твэлов при разрывах трубопроводов циркуляционного контура и включении системы аварийного охлаждения устанавливает:

температуру оболочек твэлов − не более 1200 °С;

локальную глубину окисления оболочек твэлов − не более 18 % первоначальной толщины стенки;

долю прореагировавшего циркония − не более 1 % массы оболочек твэлов каналов одного раздаточного коллектора;

4) должна быть обеспечена возможность выгрузки активной зоны и извлекаемость технологического канала из реактора после МПА.

1.3. Достоинства и недостатки канальных уран-графитовых энергетических реакторов

К основным достоинствам канальных энергетических реакторов, подтвержденным более чем 55-летним опытом разработки и эксплуатации их в нашей стране, можно отнести следующие.

Дезинтегрированность конструкции:

отсутствие проблем, связанных с изготовлением, транспортировкой и эксплуатацией корпуса реактора и парогенераторов;

более легкое, по сравнению с корпусными реакторами, протекание аварий при разрывах трубопроводов контура циркуляции теплоносителя;

большой объем теплоносителя в контуре циркуляции.

Непрерывная перегрузка топлива:

малый запас реактивности;

уменьшение продуктов деления, одновременно находящихся

в активной зоне;

возможность раннего обнаружения и выгрузки из реактора ТВС с негерметичными твэлами;

возможность поддержания низкого уровня активности теплоносителя.

Аккумулирование тепла в активной зоне (графитовая кладка):

возможность перетока тепла от каналов обезвоженной петли к каналам, сохранившим охлаждение, при организации «шахматного» расположения каналов различных петель;

уменьшение скорости роста температуры при авариях с обезвоживанием.

Высокий уровень естественной циркуляции теплоносителя, позволяющий длительное время расхолаживать реактор при обесточивании энергоблока.

Возможность получения требуемых нейтронно-физических характеристик активной зоны.

Гибкость топливного цикла:

малое обогащение топлива;

возможность дожигать после регенерации отработанное топливо из реакторов ВВЭР;

возможность наработки широкого спектра изотопов. Недостатки канальных водографитовых реакторов:

сложность организации контроля и управления из-за больших размеров активной зоны;

наличие в активной зоне конструкционных материалов, ухудшающих баланс нейтронов;

сборка реактора на монтаже из отдельных транспортабельных узлов, что приводит к увеличению объема работ в условиях стройплощадки;

разветвленность циркуляционного контура реактора, увеличивающая объем эксплуатационного контроля основного металла и сварных швов и дозозатраты при ремонте и обслуживании;

образование за счет материала графитовой кладки дополнительных отходов при снятии реактора с эксплуатации.

ГЛАВА 2. Конструкция реактора РБМК-1000

2.1. Общее описание конструкции реактора

Реактор РБМК-1000 (рис. 2.1) тепловой мощностью 3200 МВт представляет собой систему, в которой в качестве теплоносителя используется легкая вода, а в качестве топлива − двуокись урана.

Реактор РБМК-1000 − гетерогенный, уран-графитовый, кипящего типа, на тепловых нейтронах предназначен для выработки насыщенного пара давлением 70 кг/см2 . Теплоноситель − кипящая вода. Основные технические характеристики реактора приведены в табл. 2.1.

Рис. 2.1. Разрез блока с реактором РБМК-1000

Комплекс оборудования, включающий в себя ядерный реактор, технические средства, обеспечивающие его работу, устройства вывода из реактора тепловой энергии и преобразования ее в другой вид энергии, как правило, называют ядерной энергетической установкой. Приблизительно 95 % энергии, выделяющейся в результате реакции деления, прямо передается теплоносителю. Около 5 % мощности реактора выделяется в графите от замедления нейтронов и поглощения гамма-квантов.

Реактор состоит из набора вертикальных каналов, вставленных в цилиндрические отверстия графитовых колонн, а также верхней и нижней защитных плит. Легкий цилиндрический корпус (кожух) замыкает полость графитовой кладки.

Кладка состоит из собранных в колонны графитовых блоков квадратного сечения с цилиндрическими отверстиями по оси. Кладка опирается на нижнюю плиту, которая передает вес реактора на бетонную шахту. Топливные каналы и каналы регулирующих стержней проходят через нижние и верхние металлоконструкции.



Общее устройство реактора РБМК-1000

"Сердце" атомной электростанции - реактор, в активной зоне которого поддерживается цепная реакция деления ядер урана. РБМК - канальный водографитовый реактор на медленных (тепловых) нейтронах. Основным теплоносителем в нем является вода, а замедлителем нейтронов - графитовая кладка реактора. Кладка набрана из 2488 вертикальных графитовых колонн, с основанием 250x250 мм и внутренним отверстием диаметром 114 мм. 1661 колонны предназначены для установки в них топливных каналов, 211 - для каналов СУЗ (системы управления и защиты) реактора, а остальные являются боковым отражателем.
Реактор одноконтурный, с кипением теплоносителя в каналах и прямой подачей насыщенного пара в турбины.

Активная зона, ТВЭЛы и топливные кассеты

Топливом в РБМК является двуокись урана-235 U0 2 , степень обогащения топлива по U-235 - 2.0 - 2.4%. Конструктивно топливо находится в тепловыделяющих элементах (ТВЭЛах), представляющих собой стержни из циркониевого сплава, наполненные таблетками спеченной двуокиси урана. Высота ТВЭЛа - примерно 3.5 м, диаметр 13.5 мм. ТВЭЛы упаковываются в тепловыделяюие сборки (ТВС), содержащие по 18 ТВЭЛов каждая. Две соединенные последовательно тепловыделяющие сборки образуют топливную кассету, высота которой составляет 7 м.
Вода подается в каналы снизу, омывает ТВЭЛы и нагревается, причем часть ее при этом превращается в пар. Образующаяся пароводяная смесь отводится из верхней части канала. Для регулирования расхода воды на входе в каждый канал предусмотрены запорно-регулирующие клапаны.
Итого, диаметр активной зоны ~12 м, высота ~7 м. В ней находиться около 200 тонн урана-235.

СУЗ

Стержни СУЗ предназначены для регулирования радиального поля энерговыделения (PC), автоматического регулирования мощности (АР), быстрой остановки реактора (A3) и регулирования высотного поля энерговыделения (УСП), причем стержни УСП длиной 3050 мм выводятся из активной зоны вниз, а все остальные длиной 5120 мм, вверх.
Для контроля за энергораспределением по высоте активной зоны предусмотрено 12 каналов с семисекционными детекторами, которые установлены равномерно в центральной части реактора вне сетки топливных каналов и каналов СУЗ. Контроль за энергораспределением по радиусу активной зоны производится с помощью детекторов, устанавливаемых в центральные трубки ТВС в 117 топливных каналах. На стыках графитовых колонн кладки реактора предусмотрено 20 вертикальных отверстий диаметром 45 мм, в которых устанавливаются трехзонные термометры для контроля за температурой графита.
Управление реактором осуществляется равномерно распределенными по реактору стержнями, содержащими поглощающий нейтроны элемент - бор. Стержни перемещаются индивидуальными сервоприводами в специальных каналах, конструкция которых аналогична технологическим. Стержни имеют собственный водяной контур охлаждения с температурой 40-70°С. Использование стержней различной конструкции обеспечивает возможность регулирования энерговыделения по всему объему реактора и его быстрое заглушение при необходимости.
На стержни АЗ - аварийной зашиты - в РБМК приходится 24 штуки. Стержней автоматического регулирования - 12 штук. Стержней локального автоматического регулирования - 12 штук, стержней ручного регулирования -131, и 32 укороченных стержня поглотителя (УСП).


1. Активная зона 2. Пароводяные трубопроводы 3. Барабан-сепаратор 4. Главные циркуляционные насосы 5. Раздаточные групповые коллекторы 6. Водные трубопроводы 7. Верхняя биологическая защита 8. Разгрузочно-загрузочная машина 9. Нижняя биологическая защита.

Контур многократной принудительной циркуляции

Это контур отвода тепла из активной зоны реактора. Основное движение воды в нем обеспечивается главными циркуляционными насосами (ГЦН). Всего в контуре имеется 8 ГЦН, разделенных на 2 группы. Один насос из каждой группы - резервный. Производительность главного циркуляционного насоса - 8000 м 3 /ч, напор - 200 м водного столба, мощность двигателя - 5,5 МВт, тип насоса - центробежный, подводимое напряжение - 6000 В.


Кроме ГЦН имеются питательные, конденсатные насосы и насосы систем безопасности.

Турбина

В турбине рабочее тело - насыщенный пар расширяясь, совершает работу. Реактор РБМК-1000 питает паром 2 турбины по 500 МВт каждая. В свою очередь, каждая турбина состоит из одного цилиндра высокого давления и четырех цилиндров низкого давления.
На входе в турбину давление около 60 атмосфер - на выходе из турбины пар находится при давлении меньше атмосферного. Расширение пара ведет к тому, что проходное сечения канала, должно увеличиваться для этого высота лопаток по ходу движения пара в турбине возрастает от ступени к ступени. Так как, пар поступает в турбину насыщенным то, расширяясь в турбине, он быстро увлажняется. Предельно допустимая влажность пара обычно не должна превышать 8-12% во избежание интенсивного эрозионного износа лопаточного аппарата каплями воды и снижения КПД.
При достижении предельной влажности весь пар выводится из цилиндра высокого давления и пропускается через сепаратор – пароподогреватель (СПП), где он осушается и нагревается. Для подогрева основного пара до температуры насыщения используется пар первого отбора турбины, для перегрева используется острый пар (пар из барабан-сепаратора), дренаж греющего пара сливается в деаэратор.
После сепаратора – пароподогревателя пар поступает в цилиндр низкого давления. Здесь пар в процессе расширения снова увлажняется до предельно допустимой влажности и поступает в конденсатор (К). Стремление получить от каждого килограмма пара возможно большую работу и тем самым повысить КПД заставляет поддерживать в конденсаторе возможно более глубокий вакуум. В связи с этим конденсатор и большая часть цилиндра низкого давления турбины находятся под разрежением.
Турбина имеет семь отборов пара, первый применяется в сепараторе-пароперегревателе для подогрева основного пара до температуры насыщения, второй отбор используется для подогрева воды в деаэраторе, а отборы 3 – 7 используются для подогрева основного потока конденсата в, соответственно, ПНД-5 - ПНД-1 (подогреватели низкого давления).

Топливные кассеты

К твэлам и ТВС предъявляются высокие требования по надежности в течение всего срока службы. Сложность реализации их усугубляется тем, что длина канала составляет 7000 мм при относительно небольшом его диаметре, и при этом должна быть обеспечена машинная перегрузка кассет как на остановленном, так и на работающем реакторе.
Параметр Размерность Величина
Мощность максимально напряженного канала кВт (тепловых) 3000-3200
Расход теплоносителя через канал при максимальной мощности т/ч 29,5-30,5
Максимальное массовое паросодержание на выходе из кассет % 19,6
Параметры теплоносителя на входе в кассету
Давление кгс/см 2 79,6
Температура °С 265
Параметры теплоносителя на выходе из кассеты:
Давление кгс/см 2 75,3
Температура °С 289,3
Максимальная скорость м/с 18,5
Максимальная температура:
Наружной поверхности оболочки, °С 295
Внутренней поверхности оболочки °С 323

Разгрузочно-загрузочная машина (РЗМ)

Отличительной особенностью РБМК является возможность перезагрузки топливных кассет без остановки реактора при номинальной мощности. Фактически, это штатная операция и производится она практически ежедневно.
Установка машины над соответствующим каналом производится по координатам, а точное наведение на канал с помощью оптико-телевизионной системы, через которую можно наблюдать головку пробки канала, или с помощью контактной системы, в которой возникает сигнал при касании детектора с боковой поверхностью верха стояка канала.
В РЗМ имеется окруженный биологической защитой (контейнером) герметичный пенал-скафандр, снабженный поворотным магазином с четырьмя гнездами для ТВС и других устройств. Скафандр оборудован специальными механизмами для выполнения работ по перегрузке.
При перегрузке топлива скафандр уплотняется по наружной поверхности стояка канала, и в нем создается давление воды, равное давлению теплоносителя в каналах. В таком состоянии разуплотняется запорная пробка, извлекается отработавшая ТВС с подвеской, устанавливается новая ТВС и уплотняется пробка. Во время всех этих операций вода из РЗМ поступает в верхнюю часть канала и, смешиваясь с основным теплоносителем, выводится из канала по отводящему трубопроводу. Таким образом, при перегрузке топлива обеспечивается непрерывная циркуляция теплоносителя через перегружаемый канал, при этом вода из канала не попадает в РЗМ.

Эта статья, которая должна дать общее представление об устройстве и работе реактора, ставшего сегодня одним из основных для нашей атомной энергетики, служит и пояснительным текстом к рисункам, где изображен реактор РБМК-1000, и к схемам, Поясняющим работу разгрузочно-загрузочной машины (РЗМ).
Главный корпус АЭС с реактором РБМК состоит из двух энергетических блоков электрической мощностью по 1000 МВт, с общим турбогенераторным залом и раздельными помещениями для реакторов. Энергетический блок - это реактор с контуром циркуляции теплоносителя и вспомогательными системами, система трубопроводов и оборудования, по которым вода из конденсаторов турбин направляется в контур циркуляции теплоносителя, и два турбогенератора мощностью по 500 МВт каждый.
Теплоноситель-вода, циркулирует по двум параллельным системам. Каждая система включает в себя по два барабана-сепаратора, 24 опускных трубы,4 всасывающий и - напорный коллекторы, - 4 циркуляционных насоса, из которых три работают, а один находится в резерве, 22 раздаточных групповых коллектора,- а также запорную и регулирующую арматуру.
От раздаточных групповых коллекторов вода с температурой 270°С по индивидуальным трубопроводам с помощью запорно-регулирующих клапанов распределяется по технологическим каналам. Омывая тепловыделяющие элементы, она нагревается до температуры насыщения, частично испаряется, и образовавшаяся пароводяная смесь также по индивидуальным трубопроводам "от каждого канала поступает в барабаны-сепараторы. Здесь происходит разделение пароводяной смеси на пар и воду. Отсепарированная вода смешивается с питательной водой и по опускным трубам направляется к главным циркуляционным насосам. Насыщенный пар давлением 70 кгс/см2 направляется по восьми паропроводам к двум турбинам. Отработав в цилиндрах высокого давления турбин, пар поступает в промежуточные сепараторы-перегреватели, где от него отделяется влага и он перегревается до температуры 250°C. Пройдя цилиндры низкого давления, пар поступает в конденсаторы. Конденсат проходит стопроцентную очистку на фильтрах, подогревается, в пяти регенеративных подогревателях и поступает в деаэраторы. Оттуда вода при температуре 165°C насосами подается обратно в барабаны-сепараторы. Всего за час через реактор насосы прогоняют около 38 тыс. т воды. Номинальная тепловая мощность реактора составляет 3140 МВт; за час он производит 5400 т пара.
Реактор размещен в бетонной шахте квадратного сечения размером 21,6 X 21,6 м и глубиной 25,5 м. Вес реактора передается на бетон при помощи сварных металлоконструкций, которые Одновременно служат биологической защитой. Вместе с кожухом они образуют заполненную смесью гелия и азота герметичную полость - реакторное пространство, в котором расположена графитовая кладка. Газ служит для поддержания температурного режима кладки.
Верхняя и нижняя металлоконструкции реактора засыпаны защитным материалом (горная порода серпентинит) и заполнены азотом. В качестве боковой биологической защиты используются водяные баки.

Графитовая кладка представляет собой вертикально расположенный цилиндр, собранный из графитовых колонн с центральными отверстиями для технологических (парогенерирующих) каналов и каналов системы управления и защиты (на схеме они не показаны).
Так как при работе реактора в графитовом замедлителе выделяется примерно 5% тепловой энергии, то для поддержания необходимого температурного режима графитовых блоков и улучшения отвода тепла от графита к теплоносителю, протекающему в каналах, была предложена оригинальная конструкция колец твердого контакта. Разрезные кольца (высотой 20 мм) размещаются по высоте канала вплотную друг к другу таким образом, что каждое соседнее кольцо имеет надежный контакт по цилиндрической поверхности либо с трубой канала, либо с внутренней поверхностью графитового блока кладки, а также по торцам с двумя другими кольцами. Эффективность предложенной конструкции была проверена экспериментами на тепловом стенде. Опыт эксплуатации энергоблоков Ленинградской АЭС подтвердил возможность и простоту установки канала с графитовыми кольцами в технологический тракт и извлечение из него.
Технологический канал - это сварная трубная конструкция, предназначенная для установки в ней тепловыделяющих сборок (ТВС) и организации потока теплоносителя.
Верхняя и нижняя части канала сделаны из нержавеющей стали, а центральная труба диаметром 88 мм и толщиной стенки 4 мм в пределах активной зоны, высота которой 7 м, изготовлена из сплава циркония с ниобием (2,5%). Этот сплав меньше, чем сталь, поглощает нейтроны, имеет высокие механические и коррозионные свойства. Создание надежного герметичного соединения центральной циркониевой части канала со стальными трубами оказалось сложной задачей, так как коэффициенты линейного расширения соединяемых материалов различаются примерно в три раза. Решить ее удалось с помощью переходников сталь-цирконий, выполненных методом диффузионной сварки.
В технологическом канале (таких каналов 1693) размещают кассету с двумя тепловыделяющими сборками; каждая такая сборка состоит из 18 твэлов. Тепловыделяющий элемент представляет собой трубку из циркониевого сплава наружным диаметром 13,6 мм, толщиной стенки 0,9 мм с двумя концевыми заглушками, внутри которой помещены таблетки из двуокиси урана. Всего в реактор загружается около 190 т урана, содержащего 1,8% изотопа урана-235.

1.Введение…………………………………………………………….4

2.Основные характеристики реактора РБМК–1000………………7

2.1 Тепловая схема с реактором РБМК– 1000……………………7

2.2 Внутриреакторные конструкции………………………………...12

2.3 Запорно-регулирующий клапан………………………………....18

2.4 Разгрузочно-загрузочная машина……………………………….21

2.5 Тепловыделяющие сборки (ТВС)…………………………….....25

2.6 Конструкция защиты от ионизирующего излучения ректора..28

3.Виды и назначение трубопроводов и их составных частей с рисунками и схемами, параметры работы и основные усилия, действующие на трубопроводы……………………………………………………………….32

4.Основные дефекты, возникающие в трубопроводах с анализом причин их возникновения, методы обнаружения дефектов………………………….48

5.Порядок вывода трубопроводов в ремонт с подготовкой рабочего места и отключения от тепловой схемы…………………………………………….53

6.Технология производства ремонта, промежуточный контроль……….57

7.Испытания трубопроводов………………………………………………..60

8.Ввод в эксплуатацию……………………………………………………….61

9.Заключение…………………………………………………………………..63

10.Список сокращений……………………………………………………….64

11.Список использованной литературы…………………………………….66

ВВЕДЕНИЕ

Реактор РБМК-1000 является реактором с неперегружаемыми каналами, в отличие от реакторов с перегружаемыми каналами, ТВС и технологический канал являются раздельными узлами. К установленным в реактор каналам с помощью неразъемных соединений подсоединены трубопроводы - индивидуальные тракты подвода и отвода теплоносителя. Загружаемые в каналы ТВС крепятся и уплотняются в верхней части стояка канала. Таким образом, при перегрузке топлива не требуется размыкания тракта теплоносителя, что позволяет осуществлять ее с помощью соответствующих перегрузочных устройств без остановок реактора.

При создании таких реакторов решалась задача экономичного использования нейтронов в активной зоне реактора. С этой целью оболочки ТВЭЛов и трубы канала изготовлены из слабо поглощающих нейтроны циркониевых сплавов. В период разработки РБМК температурный предел работы сплавов циркония был недостаточно высок. Это определило относительно невысокие параметры теплоносителя в РБМК. Давление в сепараторах равно 7,0 МПа, чему соответствует температура насыщенного пара 284° С. Схема установок РБМК одноконтурная. Пароводяная смесь после активной зоны попадает по индивидуальным трубам в барабаны-сепараторы, после которых насыщенный пар направляется в турбины, а отсепарированная циркуляционная вода после ее смешения с питательной водой, поступающей в барабаны-сепараторы от турбоустановок, с помощью циркуляционных насосов подается к каналам реактора. Разработка РБМК явилась значительным шагом в развитии атомной энергетики СССР, поскольку такие реакторы позволяют создать крупные АЭС большой мощности.

Из двух типов реакторов на тепловых нейтронах - корпусных водо-водяных и канальных водографитовых, использовавшихся в атомной энергетике Советского Союза, последние оказалось проще освоить и внедрить в жизнь. Это объясняется тем, что для изготовления канальных реакторов могут быть использованы общемашиностроительные заводы и не требуется такого уникального оборудования, которое необходимо для изготовления корпусов водо-водяных реакторов.

Эффективность канальных реакторов типа РБМК в значительной степени зависит от мощности, снимаемой с каждого канала. Распределение мощности между каналами зависит от плотности потока нейтронов в активной зоне и выгорания топлива в каналах. При этом существует предельная мощность, которую нельзя превышать ни в одном канале. Это значение мощности определяется условиями теплосъема.

Первоначально проект РБМК был разработан на электрическую мощность 1000 МВт, чему при выбранных параметрах соответствовала тепловая мощность реактора 3200 МВт. При имеющемся в реакторе количестве рабочих каналов (1693) и полученном коэффициенте неравномерности тепловыделения в активной зоне реактора максимальная мощность канала составляла около 3000 кВт. В результате экспериментальных и расчетных исследований было установлено, что при максимальном массовом паросодержании на выходе из каналов около 20 % и указанной мощности обеспечивается необходимый запас до кризиса теплосъема. Среднее паросодержание по реактору составляло 14,5%. Энергоблоки с реакторами РБМК электрической мощностью 1000 МВт (РБМК-1000) находятся в эксплуатации на Ленинградской, Курской, Чернобыльской АЭС, Смоленской АЭС. Они зарекомендовали себя как надежные и безопасные установки с высокими технико-экономическими показателями. Если их специально не взрывать.

Для повышения эффективности реакторов РБМК были изучены возможности увеличения предельной мощности каналов. В результате конструкторских разработок и экспериментальных исследований оказалось возможным путем интенсификации теплообмена увеличить предельно допустимую мощность канала в 1,5 раза до 4500 кВт при одновременном повышении допустимого паросодержания до нескольких десятков процентов. Необходимая интенсификация теплообмена достигнута благодаря разработке ТВС, в конструкции которой предусмотрены интенсификаторы теплообмена. При увеличении допустимой мощности канала до 4500 кВт тепловая мощность реактора РБМК повышена до 4800 МВт, чему соответствует электрическая мощность 1500 МВт. Такие реакторы РБМК-1500 работают на Игналинской АЭС. Увеличение мощности в 1,5 раза при относительно небольших изменениях конструкции с сохранением размеров реактора является примером технического решения, дающего большой эффект.


ОСНОВНЫЕ ХАРАКТЕРИСТИКИ РЕАКТОРА РБМК-1000

Тепловая схема с реактором РБМК – 1000

ЧАСТЬ.

Виды и назначение трубопроводов и их составных частей с рисунками и схемами, параметры работы и основные усилия, действующие на трубопроводы.

Классификация трубопроводов

Трубопроводы в зависимости от класса опасности транспортируемого вещества (взрыво-пожароопасность и вредность) подразделяются на группы среды (А, Б, В) и в зависимости от расчетных параметров среды (давления и температуры) – на пять категорий (I, II, III, IV, V)

Категорию трубопровода следует устанавливать по параметру, требующему отнесения его к более ответственной категории.

Обозначение группы определенной транспортируемой среды включает в себя обозначение группы среды (А, Б, В) и подгруппы (а, б, в), отражающей токсичность и взрывопожароопасность веществ, входящих в эту среду.

Обозначение трубопровода в общем виде соответствует обозначению группы транспортируемой среды и его категории. Обозначение "трубопровод I группа А(б)" обозначает трубопровод, по которому транспортируется среда группы А (б) c параметрами категории I.

Группа среды трубопровода, транспортирующего среды, состоящие из различных компонентов, устанавливается по компоненту, требующему отнесения трубопровода к более ответственной группе. При этом если содержание одного из компонентов в смеси превышает среднюю смертельную концентрацию в воздухе согласно ГОСТ 12.1.007, то группу смеси следует определять по этому веществу. Если наиболее опасный по физико-химическим свойствам компонент входит в состав смеси в количестве ниже смертельной дозы, вопрос об отнесении трубопровода к менее ответственной группе или категории трубопровода решается проект- ной организацией (автором проекта).

Класс опасности веществ следует определять по ГОСТ 12.1.005 и ГОСТ 12.1.007 , значения показателей пожаровзрывоопасности веществ – по соответствующей НД или методикам, изложенным в ГОСТ 12.1.044.

Для вакуумных трубопроводов следует учитывать абсолютное рабочее давление.

Трубопроводы, транспортирующие вещества с рабочей температурой, равной или превышающей температуру их самовоспламенения, а также негорючие, трудногорючие и горючие вещества, которые при взаимодействии с водой или кислородом воздуха могут быть пожаровзрывоопасными, следует относить к I категории. По решению разработчика допускается в зависимости от условий эксплуатации принимать более ответственную (чем определяемую по расчетным параметрам среды) категорию трубопровода.

Требования к конструкции трубопроводов

Конструкция трубопровода должна предусматривать возможность выполнения всех видов контроля. Если конструкция трубопровода не позволяет проведение наружного и внутреннего осмотров или гидравлического испытания, автором проекта должна быть указана методика, периодичность и объем контроля, выполнение которых обеспечит своевременное выявление и устранение дефектов.

Ответвления (врезки)

Ответвление от трубопровода выполняется одним из способов. Не допускается усиление ответвлений с помощью ребер жесткости.

– Ответвления на технологических трубопроводах

Присоединение ответвлений по способу "а" применяется в тех случаях, когда ослабление основного трубопровода компенсируется имеющимися запасами прочности соединения. Допускаются также врезки в трубопровод по касательной к окружности по- перечного сечения трубы для исключения накопления продуктов в нижней части трубопровода.

Сваренные из труб тройники, штампосварные отводы, тройники и отводы из литых по электрошлаковой технологии заготовок допускается применять на давление до 35 МПа (350 кгс/см2). При этом все сварные швы и металл литых заготовок подлежат контролю УЗД в объеме 100 %.

Сварные крестовины и крестовые врезки допускается применять на трубопроводах из углеродистых сталей при рабочей температуре не выше 250 °С. Крестовины и крестовые врезки из электросварных труб допускается при- менять при номинальном давлении не более PN 16 (1,6 МПа). При этом крестовины должны быть изготовлены из труб с номинальным давлением не менее PN 25 (2,5 МПа). Крестовины и крестовые врезки из бесшовных труб допускается применять при номинальном давлении не более PN 24 (при условии изготовления крестовин из труб с номинальным давлением не менее PN 40. Врезку штуцеров в сварные швы трубопроводов следует производить с учетом пункта 11.2.7.

Отводы

Для трубопроводов применяются, как правило, крутоизогнутые отводы, изготовленные из бесшовных и сварных прямошовных труб методом горячей штамповки или протяжки, а также гнутые и штампосварные. При диаметре больше DN 6.4.2 400 выполняют подварку корня шва, сварные швы подвергают 100 % ультразвуковому или радиографическому контролю.

Гнутые отводы, изготовляемые из бесшовных труб, применяются в тех случаях, когда требуется максимально снизить гидравлическое сопротивление трубопровода, например, на трубопроводах с пульсирующим потоком среды (с целью снижения вибрации), а также на трубопроводах при номинальном диаметре до DN 25. Необходимость термообработки определяют по 12.2.11.

Пределы применения гнутых отводов из труб действующего сортамен- та должны соответствовать пределам применения труб, из которых они изготов- лены. Длина прямого участка от конца трубы до начала гнутого участка должна быть не менее 100 мм.

В трубопроводах допускается применять сварные секторные отводы номинальным диаметром DN 500 и менее при номинальном давлении не более PN 40 (4 МПа) и номинальным диаметром более DN 500 при номинальном давлении до PN 25 (2,5 МПа). При изготовлении секторных отводов угол между поперечными сечениями сектора не должен превышать 22,5°. Расстояние между соседними сварными швами по внутренней стороне отвода должно обеспечивать доступность контроля этих швов по всей длине шва. Для изготовления секторных отводов не допускается применение спиральношовных труб, при диаметре более 400 мм применяют подварку корня шва, сварные швы подвергают 100 % ультразвуковому или радиографическому контролю. Сварные секторные отводы не следует применять в случаях: - больших циклических нагрузок, например от давления, более 2000 циклов; - необеспеченности самокомпенсации за счет других трубных элементов.

Переходы

В трубопроводах следует применять, как правило, переходы штампованные, вальцованные из листа с одним сварным швом, штампосварные из поло- вин с двумя сварными швами. Пределы применений стальных переходов должны соответствовать пределам применения присоединяемых труб аналогичных марок сталей и аналогичных рабочих (расчетных) параметров.

Допускается применение лепестковых переходов для трубопроводов с номинальным давлением не более PN16 (1,6 МПа) и номинальным диаметром DN 500 и менее. Не допускается устанавливать лепестковые переходы на трубопроводах, предназначенных для транспортирования сжиженных газов и веществ группы А и Б.

Лепестковые переходы следует сваривать с последующим 100 %-ным контролем сварных швов ультразвуковым или радиографическим методом. После изготовления лепестковые переходы следует подвергать термообра- ботке.

Заглушки

Приварные плоские и ребристые заглушки из листовой стали рекомендуется применять для трубопроводов при номинальном давлении до PN 25 (2,5 МПа).

Заглушки, устанавливаемые между фланцами, не следует применять для разделения двух трубопроводов с различными средами, смешение которых недопустимо.

Пределы применения заглушек и их характеристики по материалу, давлению, температуре, коррозии и т.д. должны соответствовать пределам применения фланцев.

Требования к трубопроводной арматуре .

При проектировании и изготовлении трубопроводной арматуры необходимо выполнять требования технических регламентов, стандартов и требования заказчиков в соответствии с требованиями безопасности по ГОСТ Р 53672 .

В ТУ на конкретные виды и типы трубопроводной арматуры должны быть приведены:

Перечень нормативных документов, на основании которых производят проектирование, изготовление и эксплуатацию арматуры;

Основные технические данные и характеристики арматуры;

Показатели надежности и (или) показатели безопасности (для арматуры, у которой возможны критические отказы);

Требования к изготовлению;

Требования безопасности; - комплект поставки;

Правила приемки;

Методы испытаний;

Перечень возможных отказов и критерии предельных состояний;

Указания по эксплуатации;

Основные габаритные и присоединительные размеры, в том числе наружный и внутренний диаметры патрубков, разделки кромок патрубков под при- варку и др.

Основные показатели назначения арматуры (всех видов и типов), устанавливаемые в конструкторской и эксплуатационной документации:

Номинальное давление PN (рабочее или расчетное давление Р);

Номинальный диаметр DN;

Рабочая среда;

Расчетная температура (максимальная температура рабочей среды);

Допустимый перепад давлений;

Герметичность затвора (класс герметичности или величина утечки);

Строительная длина;

Климатическое исполнение (с параметрами окружающей среды);

Стойкость к внешним воздействиям (сейсмические, вибрационные и др.);

Дополнительные показатели назначения для конкретных видов арматуры:

Коэффициент сопротивления (ζ) для запорной и обратной арматуры;

Зависимость коэффициента сопротивления от скоростного давления – для обратной арматуры;

Коэффициент расхода (по жидкости и по газу), площадь седла, давление настройки, давление полного открытия, давление закрытия, противодавление, диапазон давлений настройки - для предохранительной арматуры;

Условная пропускная способность (Кvy), вид пропускной характеристики, кавитационные характеристики – для регулирующей арматуры;

Условная пропускная способность, величина регулируемого давления, диапазон регулируемых давлений, точность поддержания давления (зона нечувствительности и зона неравномерности), минимальный перепад давления, при ко- тором обеспечивается работоспособность – для регуляторов давления;

Параметры приводов и исполнительных механизмов;

А) для электропривода – напряжение, частота тока, мощность, режим ра- боты, передаточное число, КПД, максимальный крутящий момент, параметры ок- ружающей среды;

Б) для гидро – и пневмопривода – управляющая среда, давление управ- ляющей среды – для регуляторов давления;

Время открытия (закрытия) – по требованию заказчика арматуры.

Арматура должна быть испытана в соответствии с ГОСТ Р 53402 и ТУ, при этом обязательный объем испытаний должен включать:

На прочность и плотность основных деталей и сварных соединений, работающих под давлением;

На герметичность затвора, нормы герметичности затвора – по ГОСТ Р 54808 (для арматуры рабочих средств групп А, Б(а) и Б(б) при испытании на герметичность затворов не должно быть видимых утечек – класс А ГОСТ Р 54808);

На герметичность относительно внешней среды;

На функционирование (работоспособность). Результаты испытаний должны быть отражены в паспорте арматуры.

Применение запорной арматуры в качестве регулирующей (дроссели- рующей) не допускается.

При установке привода на арматуру маховики для ручного управления должны открывать арматуру движением против часовой стрелки, а закрывать – по часовой стрелке. Направление осей штока привода должно определяться в проектной документации.

Запорная арматура должна иметь указатели положения запирающего элемента ("открыто", "закрыто).

Материал арматуры для трубопроводов следует выбирать в зависимости от условий эксплуатации, параметров и физико-химических свойств транспортируемой среды и требований НД. Арматуру из цветных металлов и их сплавов допускается применять в тех случаях, когда стальная и чугунная арматура не может быть использована по обоснованным причинам. Арматуру из углеродистых и легированных сталей допускается применять для сред со скоростью коррозии не более 0,5 мм/год.

Арматуру из ковкого чугуна марки не ниже КЧ 30-6 и из серого чугуна марки не ниже СЧ 18-36 следует применять для трубопроводов, транспортирующих среды группы.

Для сред групп А(б), Б(а), кроме сжиженных газов; Б(б), кроме ЛВЖ с температурой кипения ниже 45°С; Б(в) – арматуру из ковкого чугуна допускается использовать, если пределы рабочих температур среды не ниже минус 30 °С и не выше 150 °С при давлении среды не более 1,6 МПа (160 кгс/см2). При этом для номинальных рабочих давлений среды до 1 МПа применяется арматура, рассчитанная на давление не менее PN 16 (1,6 МПа), а для номинальных давлений более PN 10 (1 МПа) - арматура, рассчитанная на давление не менее PN 25 (2,5 МПа). 8.13 Не допускается применять арматуру из ковкого чугуна на трубопроводах, транспортирующих среды группы А(а), сжиженных газов группы Б(а);

ЛВЖ с температурой кипения ниже 45 °С группы Б(б). Не допускается применять арматуру из серого чугуна на трубопроводах, транспортирующих вещества групп А и Б, а также на паропроводах и трубопроводах горячей воды, используемых в качестве спутников.

Арматуру из серого и ковкого чугуна не допускается применять независимо от среды, рабочего давления и температуры в следующих случаях: - на трубопроводах, подверженных вибрации;

На трубопроводах, работающих при резкопеременном температурном режиме среды;

При возможности значительного охлаждения арматуры в результате дроссельэффекта;

На трубопроводах, транспортирующих вещества групп А и Б, содержа- щих воду или другие замерзающие жидкости, при температуре стенки трубопровода ниже 0 °С независимо от давления;

В обвязке насосных агрегатов при установке насосов на открытых площадках;

В обвязке резервуаров и емкостей для хранения взрывопожароопасных и токсичных веществ.

На трубопроводах, работающих при температуре среды ниже 40 °С, следует применять арматуру из соответствующих легированных сталей, специальных сплавов или цветных металлов, имеющих при наименьшей возможной температуре корпуса ударную вязкость металла (KCV) не ниже 20 Дж/см2. Для жидкого и газообразного аммиака допускается применение специальной арматуры из ковкого чугуна в пределах параметров и условий.

гидроприводе арматуры следует применять негорючие и незамерзающие жидкости, соответствующие условиям эксплуатации.

С целью исключения возможности выпадения в пневмоприводах конденсата в зимнее время газ осушают до точки росы при отрицательной расчетной температуре трубопровода.

Для трубопроводов с номинальным давлением свыше 35 МПа (350 кгс/см2) применение литой арматуры не допускается.

Арматуру с уплотнением фланцев "выступ-впадина" в случае применения специальных прокладок допускается применять при номинальном давлении до 35 МПа (350 кгс/см2)

Для обеспечения безопасной работы в системах автоматического регулирования при выборе регулирующей арматуры должны быть соблюдены условия:

Потери давления (перепад давления) на регулирующей арматуре при максимальном расходе рабочей среды должны быть не менее 40 % потерь давления во всей системе;

При течении жидкости перепад давления на регулирующей арматуре во всем диапазоне регулирования не должен превышать величины кавитационного перепада.

На корпусе арматуры на видном месте изготовитель наносит маркировку в следующем объеме:

Наименование или товарный знак изготовителя;

Заводской номер; - год изготовления;

Номинальное (рабочее) давление РN (Рр); - номинальный диаметр DN;

Температура рабочей среды (при маркировке рабочего давления Рр – обязательно);

Стрелка-указатель направления потока среды (при односторонней подаче среды); - обозначение изделия;

Марка стали и номер плавки (для корпусов, выполненных из отливок); - дополнительные знаки маркировки в соответствии с требованиями заказчиков, национальных стандартов.

В комплект поставки трубопроводной арматуры должна входить эксплуатационная документация в объеме:

Паспорт (ПС);

Руководство по эксплуатации (РЭ);

Эксплуатационная документация на комплектующие изделия (приводы, исполнительные механизмы, позиционеры, конечные выключатели и др.). Форма паспорта приведена в приложении Н (справочное). В руководстве по эксплуатации должны быть приведены: - описание конструкции и принцип действия арматуры;

Порядок сборки и разборки; - повторение и пояснение информации, включенной в маркировку арматуры;

Перечень материалов основных деталей арматуры;

Информация о видах опасных воздействий, если арматура может представлять опасность для жизни и здоровья людей или окружающей среды, и мерах по их предупреждению и предотвращению;

Показатели надежности и (или) показатели безопасности;

Объем входного контроля арматуры перед монтажом;

Методика проведения контрольных испытаний (проверок) арматуры и ее основных узлов, порядок технического обслуживания, ремонта и диагностирования.

Перед монтажом арматуру необходимо подвергнуть входному контролю и испытаниям в объеме, предусмотренном руководством по эксплуатации. Монтаж арматуры следует проводить с учетом требований безопасности в соответствии с руководством по эксплуатации.

Безопасность арматуры при эксплуатации обеспечивается выполнением следующих требований:

Арматуру и приводные устройства необходимо применять в соответствии с их показателями назначения в части рабочих параметров, сред, условий эксплуатации;

Арматуру следует эксплуатировать в соответствии с руководством по эксплуатации (включая проектные нештатные ситуации) и технологическими регламентами;

Запорная арматура должна быть полностью открыта или закрыта. Использовать запорную арматуру в качестве регулирующей не допускается;

Арматуру необходимо применять в соответствии с ее функциональным назначением;

Производственный контроль промышленной безопасности арматуры должен предусматривать систему мер по устранению возможных предельных со- стояний и предупреждению критических отказов арматуры.

Не допускается:

Эксплуатировать арматуру при отсутствии маркировки и эксплуатационной документации;

Проводить работы по устранению дефектов корпусных деталей и подтяжку резьбовых соединений, находящихся под давлением;

Использовать арматуру в качестве опоры для трубопровода;

Применять для управления арматурой рычаги, удлиняющие плечо рукоятки или маховика, не предусмотренные инструкцией по эксплуатации;

Применять удлинители к ключам для крепежных деталей.

ПОРЯДОК ВЫВОДА ТРУБОПРОВОДОВ В РЕМОНТ С ПОДГОТОВКОЙ РАБОЧЕГО МЕСТА И ОТКЛЮЧЕНИЯ ОТ ТЕПЛОВОЙ СХЕМЫ.

В случаях разрыва труб пароводяного тракта, коллекторов, паропроводов свежего пара, пара промперегрева и отборов, трубопроводов основного конденсата и питательной воды, их пароводяной арматуры, тройников, сварных и фланцевых соединений энергоблок (котел, турбина) должен быть отключен и немедленно остановлен.
При обнаружении трещин, выпучин, свищей в паропроводах свежего пара, пара промперегрева и отборов, трубопроводах питательной воды, в их пароводяной арматуре, тройниках, сварных и фланцевых соединениях следует немедленно поставить в известность об этом начальника смены цеха. Начальник смены обязан немедленно определить опасную зону, прекратить в ней все работы, удалить из нее персонал, оградить эту зону, вывесить знаки безопасности "Проход воспрещен", "Осторожно! Опасная зона" и принять срочные меры к отключению аварийного участка посредством дистанционных приводов. Если при отключении невозможно резервировать аварийный участок, то соответствующее оборудование, связанное с аварийным участком, должно быть остановлено. Время останова определяется главным инженером электростанции с уведомлением дежурного инженера энергосистемы.
При обнаружении разрушенных опор и подвесок трубопровод должен быть отключен, а крепление восстановлено. Время останова определяется главным инженером электростанции по согласованию с дежурным инженером энергосистемы.
При выявлении повреждений трубопровода или его крепления необходим тщательный анализ причин повреждений и разработка эффективных мер по повышению надежности. При выявлении течей или парений в арматуре, фланцевых соединениях или из-под изоляционного покрытия трубопроводов об этом должно быть немедленно сообщено начальнику смены. Начальник смены обязан оценить ситуацию и, если течь или парение представляет опасность для обслуживающего персонала или оборудования (например, парение из-под изоляции), принять меры. Течь или парение, не представляющие опасности для персонала или оборудования (например, парение из сальниковых уплотнений), должны осматриваться каждую смену.

Трубопроводы должны сдаваться в ремонт по истечении планового межремонтного периода, установленного на основании действующих норм технической эксплуатации и в большинстве случаев ремонтироваться одновременно с основным оборудованием. Сдача в ремонт трубопровода до истечения планового межремонтного периода необходима при аварийном повреждении или аварийном состоянии, подтвержденном актом с указанием причин, характера и размеров повреждения или износа. Дефекты трубопроводов, выявленные в межремонтный период и не вызывающие аварийного отключения, должны устраняться при любом ближайшем останове.
Паропроводы, работающие при температуре 450 °С и более, до капитального ремонта должны быть обследованы.

При сдаче в ремонт заказчик должен передать исполнителю конструкторско-ремонтную документацию, в которой содержатся сведения о состоянии трубопровода и его составных частей, о дефектах и повреждениях. Документация должна быть подготовлена в соответствия с ГОСТ 2.602-68*. После ремонта эта документация должна быть возвращена заказчику.

В соответствии с Правилами организации, технического обслуживания и ремонта оборудования при капитальном ремонте котла и станционных трубопроводов в номенклатуру должны включаться следующие работы:

Проверка технического состояния паропроводов;

Проверка технического состояния фланцевых соединений и крепежных деталей, замена шпилек, отработавших ресурс.

Проверка затяжек пружин, осмотр и ремонт подвесок и опор.

Контроль сварных швов и металла.

Переварка дефектных стыков, замена дефектных элементов трубопровода или системы крепления.

Осмотр и ремонт пробоотборников и охладителей отборов проб.

Ремонт тепловой изоляции.

При дефектации трубопроводов должны регистрироваться провисания, выпучины, свищи, трещины, коррозионные повреждения и другие видимые дефекты. При дефектации фланцевых соединений следует проверять состояние уплотнительных поверхностей и крепежных деталей. При дефектации опор и подвесок должны регистрироваться трещины в металле всех элементов опор и подвесок и остаточная деформация в пружинах.

Порядок и объем контроля за металлом трубопроводов определяется НТД. Контроль проводится под техническим руководством лаборатории металлов.

Заказчик вправе вмешиваться в производство работ подрядчика, если последний:

Допустил дефекты, которые могут быть скрыты последующими работами;

Не выполняет технологические и нормативные требования технической документации.

При ремонтных работах, связанных с монтажом или демонтажом блоков пружин или деталей трубопроводов, должна соблюдаться предусмотренная проектом производства работ или технологической картой последовательность операций, обеспечивающая устойчивость оставшихся или вновь устанавливаемых узлов и элементов трубопроводов и предотвращение падения его демонтируемых частей.

Перед разборкой неподвижной опоры или разрезкой трубопровода при переварке сварных стыков по заключениям дефектоскопистов или при замене каких-либо элементов трубопровода пружины на ближайших двух подвесках с каждой стороны ремонтируемого участка должны быть зафиксированы резьбовыми приварными стяжками. На расстоянии не более 1 м в обе стороны от места разгрузки трубопровода (или разборки неподвижной опоры) следует установить временные опоры (раскрепления). Эти опоры должны обеспечивать смещение трубопроводов вдоль оси, требуемое при сварке, и фиксацию трубопровода в проектном положении. Крепление этих концов к соседним трубопроводам, опорам или подвескам не допускается.

По обе стороны от ремонтируемого участка должно быть сделано кернение на трубах, расстояние между точками кернения должно быть зафиксировано в акте. При восстановлении трубопровода должна выполняться холодная растяжка с таким расчетом, чтобы отклонение расстояния между точками кернения не превышало 10 мм.

После демонтажа участка или элемента трубопровода свободные концы оставшихся труб должны быть закрыты заглушками.
При разрезке трубопровода в нескольких точках необходимо в каждом случае выполнять операции.
При любой разрезке трубопровода после заварки замыкающего стыка необходимо составление акта с занесением его в шнуровую книгу.
После окончания ремонтных работ, связанных с разрезкой трубопровода или заменой деталей его опор, необходимо проверить уклоны трубопровода.
При замене дефектной пружины заменяющая пружина должна быть подобрана по соответствующей допускаемой нагрузке, предварительно оттарирована и сжата до расчетной для холодного состояния высоты. После установки в блок подвески и снятия фиксирующих стяжек следует проверить высоту пружины и при необходимости выполнить подрегулировку. При приварке стяжек недопустимо соприкосновение витков пружин с электрической дугой, а при срезке - с пламенем горелки, что может вызвать повреждение пружин.
При замене пружины в опоре из-за ее повреждения или несоответствия расчетным нагрузкам следует:

Проложить пластины под блок пружины (если заменяющий блок имеет меньшую высоту, чем у замененного);

Разобрать опорную тумбу и уменьшить ее высоту (если заменяющий блок имеет большую высоту, чем замененный).
При изменении высот пружин в пружинной опоре необходимо вынуть регулируемый блок, на тарировочном устройстве изменить его высоту и установить в опору.
После завершения работ по регулировке высот пружин в эксплуатационных формулярах должны быть зафиксированы высоты пружин после регулировки (см. приложение 6), а на указателях перемещений уточнены положения трубопровода в холодном состоянии.
Вое изменения в конструкции трубопровода, произведенные в период его ремонта и согласованные с проектной организацией, необходимо отразить в паспорте или шнуровой книге данного трубопровода. При замене поврежденных деталей трубопровода или деталей, отработавших свой ресурс, в шнуровой книге должны быть зафиксированы соответствующие характеристики новых деталей.
После окончания ремонтных и наладочных работ в ремонтном журнале должна быть сделана соответствующая запись и составлен акт сдачи в эксплуатацию с занесением в шнуровую книгу.

ИСПЫТАНИЯ ТРУБОПРОВОДОВ

ВВОД В ЭКСПЛУАТАЦИЮ

Заполнение трубопровода после проведения ремонтных работ производится по утвержденному плану, предусматривающему технологические мероприятия, направленные на удаление паровоздушной фазы в трубопроводе. Как правило, эта операция проводится с применением эластичных разделителей.

Пуск трубопровода в эксплуатацию после выполнения ремонтных работ целесообразно проводить дегазированным при атмосферных условиях конденсатом.

Заполнение трубопровода стабильным конденсатом можно производить при любом начальном давлении внутри трубопровода. Если трубопровод заполняется нестабильным конденсатом или сжиженным углеводородным газом, то эта операция должна производиться после повышения давления находящихся в трубопроводе газа, воды или стабильного продукта выше упругости паров перекачиваемого продукта и после ввода в трубопровод механических разделителей.

При необходимости вытеснения из трубопровода воды с помощью нестабильного продукта должны быть приняты меры по защите от гидратообразования (применение разделителей, ингибиторов гидратообразования и т.п.)

При отсутствии механических разделителей рекомендуется до заполнения перекачиваемым продуктов частично заполнить трубопровод стабильным конденсатом.

Газ или вода, использованные при продувке (промывке) и последующем испытании продуктопровода и вытесняемые продуктом с помощью разделителей, выпускаются из трубопровода через продувочные патрубки.

При этом должен быть организован контроль за содержанием продукта в струе, выходящей из продувочного патрубка, для уменьшения опасности загрязнения окружающей среды и снижения потерь продукта.

После заполнения трубопровода дегазированным конденсатом поднимают давление выше минимально допустимого рабочего давления, которое будет определяться давлением дегазации, величиной потерь давления на трение, составом продукта, профилем трассы и температурой самой "горячей точки" трубопровода.

Подъем давления в трубопроводе производят путем закачки конденсата при закрытой задвижке в конце участка трубопровода.

После повышения давления в начале конденсатопродуктопровода выше минимально допустимого разрешается приступить к закачке нестабильного конденсата.

Поддержание минимально допустимого рабочего давления в трубопроводе при эксплуатации обеспечивается регулятором давления "до себя", установленным непосредственно перед потребителем.

Недостатки Реактора РБМК-1000:

Большое количество трубопроводов и различных вспомогательных подсистем, что требует наличия большого количества высококвалифицированного персонала;

Необходимость проведения поканального регулирования расходов, что может повлечь за собой аварии, связанные с прекращением расхода теплоносителя через канал;

Более высокая нагрузка на оперативный персонал по сравнению с ВВЭР, связанная с большими размерами активной зоны и постоянно ведущимися перегрузками топлива в каналах.

Положительный паровой коэффициент реактивности. Во время работы реактора через активную зону прокачивается вода, используемая в качестве теплоносителя. Внутри реактора она кипит, частично превращаясь в пар. Реактор имел положительный паровой коэффициент реактивности, т. е. чем больше пара, тем больше мощность, выделяющаяся за счёт ядерных реакций. На малой мощности, на которой работал энергоблок во время эксперимента, воздействие положительного парового коэффициента не компенсировалось другими явлениями, влияющими на реактивность, и реактор имел положительный мощностный коэффициент реактивности.

Это значит, что существовала положительная обратная связь - рост мощности вызывал такие процессы в активной зоне, которые приводили к ещё большему росту мощности. Это делало реактор нестабильным и опасным. Кроме того, операторы не были проинформированы о том, что на низких мощностях может возникнуть положительная обратная связь. «Концевой эффект».

Ещё более опасной была ошибка в конструкции управляющих стержней. Для управления мощностью ядерной реакции в активную зону вводятся стержни, содержащие вещество, поглощающее нейтроны. Когда стержень выведен из активной зоны, в канале остаётся вода, которая тоже поглощает нейтроны. Для того, чтобы устранить нежелательное влияние этой воды, в РБМК под стержнями были помещены вытеснители из непоглощающего материала (графита).

Но при полностью поднятом стержне под вытеснителем оставался столб воды высотой 1,5 метра. При движении стержня из верхнего положения, в верхнюю часть зоны входит поглотитель и вносит отрицательную реактивность, а в нижней части канала графитовый вытеснитель замещает воду и вносит положительную реактивность. В момент аварии нейтронное поле имело провал в середине активной зоны и два максимума - в верхней и нижней её части.

При таком распределении поля, суммарная реактивность, вносимая стержнями, в течение первых трёх секунд движения была положительной. Это так называемый «концевой эффект», вследствие которого срабатывание аварийной защиты в первые секунды увеличивало мощность, вместо того чтобы немедленно остановить реактор. (Концево́й эффе́кт в РБМК - явление, заключающееся в кратковременном увеличении реактивности ядерного реактора (вместо ожидаемого снижения), наблюдавшееся на реакторах РБМК-1000 при опускании стержней системы управления и защиты (СУЗ) из крайнего верхнего (или близкого к нему) положения. Эффект был вызван неудачной конструкцией стержней.