そして最も高価なのはカム方式です。 カム機構のデメリット。 カムプッシャーの運動法則の選択

設計の最初の段階では、プッシャーの点 B の軌道に対するカムの回転中心の位置を決定します。 同時に、カム機構の最大圧力角が許容値mを超えないカムの初期半径の値を決定し、設計の第2段階としてセンターカムのプロファイルを構築し、それから建設的なもの。


ソーシャル ネットワークで作品を共有する

この作品が合わない場合は、ページ下部に類似作品のリストがあります。 検索ボタンもご利用いただけます


講義2 3.

カム機構の設計。

直線運動するローラーフォロアを備えたカム機構の設計。

カム機構は、設計時に指定された一定の法則に従ってプッシャーを動かすように設計されています。 設計の最初の段階では、ポイントの軌道に対するカムの回転中心の位置を決定します。で プッシャー。 同時に、カム機構の最大圧力角が許容値を超えないカムの初期半径の値を決定します。 必須の設計条件が満たされています: 。 設計の第 2 段階は、カム プロファイル (中央、次に建設的) の構築です。

設計の開始データは次のとおりです。

  1. カム機構の概略図 (図 21.3、 V);
  2. プッシャー速度の変化の法則 2 カムの回転角度に応じて 1 (写真 .23.1、a を参照);
  3. 最大プッシャー移動量 h (彼の動き);
  4. カム角速度 1 とその動作方向により、カムの逆転の可能性が許可されます。 たとえば、機械の修理やセットアップの際に回転方向を変更する。
  5. カムの回転の全位相角。カムの作動プロファイルの角度に等しい (図 23.1 を参照) b、c);
  6. 許容圧力角;
  7. 軸外(偏心) e は設計上の理由から指定されています (ただし、指定できない場合もあります)。

プッシャーの動きのグラフをプロットします。

設計の開始点はグラフ () です。このグラフは、特定の条件 () の下で、回転角度からの依存関係 () として、または回転角度からのグラフとして考えることができます (図 23.1 を参照)。あ)

プッシャーの動きのグラフ (図 23.1 を参照) b ) は、or 以降の特定の依存関係をグラフィカルに統合することによって構築されます。 グラフの軸に沿ったスケールは、mm/rad の公式を使用して計算されます。 mm/s; うーん; mm/(ms-1 )、mm/(mrad -1 )、ここで - 積分セグメント、 - 変位グラフの最大縦座標、 b - グラフのベース、 - 全位相角 (度単位)。 図では、 23.1、 b 回転の作動方向 (反時計回り) におけるカムの回転の位相角がマークされています。後退角、遠方立角、接近角です。 カムを逆転させる場合、その角度が抜き角度となり、この角度だけカムを回転させると、プッシャーは回転中心からストローク分だけ遠ざかります。 h.

カムの回転中心の許容位置の設定。

設計の最初の段階 - カムの回転中心の位置と半径の決定 - は、選択したスケール mm/m でグラフをプロットすることから始まります (図 23.1 を参照)。 G )。 検討中のメカニズムでは (図 23.1 を参照)、 V ) 点の軌跡直線の場合、セグメントは軸上に直線にレイアウトされます (図 23.1 を参照)。 G ) グラフを使用して、原点 (点の初期位置) から計算します。 伝達関数セグメントの値は、次のいずれかの式を使用して決定されます。

(23.1)

ここのスケールは同じです 、変位セグメントの計算と同様です。

検討中の機構のスキームが高次運動学的ペアの力閉鎖を規定している場合、その条件は除去フェーズでのみ満たされる必要があります (講義 22 を参照)。 したがって、式 (23.1) と対応する構築を使用した計算は、このフェーズに対してのみ実行されます。 位置 0 ~ 5 (図 23.1 の位相角を参照) b ); 位置 0 と 5 にあるとき (図 23.1 を参照)) そして。 伝達関数のセグメントは、点の軌道に対して垂直に配置されます。 B (軸に垂直に)それらの構築規則に従って、すなわち、 点の軌道の左側 B (図 23.1、d を参照) ) 角速度の方向 (反時計回り) に 90° 回転したプッシャー除去フェーズ (上) 中の速度ベクトルがこの方向を示しているためです。 曲線はカムの回転動作方向における除去段階のグラフです。

条件を満たすために、2 つの境界光線が極点と構築されたグラフから、点の軌跡の継続に対してある角度で描画されます。で そして、セグメントに垂直な(つまり、速度に平行な)直線に対してある角度です。 エリア内でカムの回転中心を選択した場合交点の下 (たとえば、点) でこれらの光線によって形成され、カムが反時計回りに回転すると、位置 0...5 の圧力角が変化します。を超えることはありません 許容可能な値。 これは、その領域がカムの回転中心の許容位置の領域ですが、角速度の作用方向 (反時計回り) に限ります。 カムの回転中心がこの領域の外側、たとえば点に選択された場合、プッシャーの一部の位置では圧力角が許容値を超えます。 たとえば、点の位置の場合、圧力角は、伝達関数セグメントの特性に従って、どちらか大きい方に等しくなります (図 23.1 を参照)。 G)。

カムが逆方向(時計回りの逆方向に回転)の場合にも条件を満たす可能性を提供するために、プッシャーの取り外しが位置 8 から位置 6 までの角度に相当するとき(図 23.1 を参照) 、 b )、グラフの右側をプロットします。 ここで (図 23.1 を参照) G ) セグメントは点の軌跡の右側にプロットされます B また、既知の規則に従って、プッシャーが遠ざかる(上に)移動するときの速度ベクトルは、従来のようにカムの回転方向に90度回転され、右に向けられる。 セグメントに垂直な線に対してある角度で点から引かれた境界光線は、ある点から前に引かれた光線と交差します。 これらの境界光線はグラフと交差すべきではなく、接触するだけです。そうしないと、機構の一部の位置で条件が満たされなくなります。

領域 II (図 23.1、d を参照) ) は、境界光線の交点より下で形成され、リバース モードでのカムの回転中心の許容位置の領域です。 カムの回転中心がこの領域内にある場合、プッシャーのどの位置でもカムの回転方向は両方向に回転します。完成します この中心とグラフ上の任意の点を結ぶ直線とセグメントの垂線との間の角度は常に許容範囲よりも小さいため、直線を設計するための前提条件となります。、中心が境界光線上にある場合は、それに等しい可能性があります)。

カム回転中心の位置を選択し、

初期半径を決定します。

最小寸法の可逆カム機構を設計する必要がある場合、カムの回転中心は境界光線の交点で選択されます (図 23.1 を参照)。 G )。 この場合、点の初期位置からの距離は B プッシャーは、カムの中心プロファイルの初期半径の値をスケールで決定します。 この場合のプッシャーは軸から外れており、左に偏心があります。これを図に示します。 23.1、 G 線分で描かれる

中央プッシャー () を備えた機構が設計されている場合、カムの回転中心は点の軌道の延長に沿って割り当てられます。で プッシャー軸 (図 23.1 を参照) V )このセンターを通過しました。 点での回転中心の選択 (図 23.1 を参照) G ) は、中央プッシャーを備えた機構のカムの初期半径の最小値を示します。

図によると。 23.1、 V を考慮して機構を設計する必要があり、その値は設計上の考慮事項によって決定されます。 この場合、カムの回転中心は直線上の許容範囲内に選択されます。交流 、プッシャーの軸に平行で、プッシャーから距離を置いて配置されます。 中心プロファイルの最小初期半径は、中心を割り当てることによって取得されます。 O (図 23.1、d を参照) ) 境界光線上。 それから。 求められた初期半径 (または) の値がカム機構リンクの強度を確保するには不十分な場合、指定された軸外の値を維持しながら、カムの回転中心が開始点からさらに離れた位置に割り当てられます。

図では、 23.1、d 3 つのカム機構における圧力角の変化のグラフが示されています (カムの回転中心を選択するために考慮された 3 つのオプションについて): カムの回転中心が点と点にそれぞれある機構のグラフと 0 。 機構の各位置の圧力角は、講義 22 で説明した伝達関数セグメントの特性に従って求められます。 たとえば、カムの回転中心が点にある機構の場合、 0 位置 3 の角度 (図 23.1 を参照) G ) 中心を結ぶ直線の間の角度として求められます。 0 伝達関数セグメントの終端とプッシャー速度の方向に平行な直線、つまり 。 カムの回転中心が直線上にある場合点0以下のAC (点からさらに離れると)、位置 3 での圧力角は より小さくなります。 初期半径を大きくすると圧力角が小さくなります。 以前に式 22.4 を分析したときに同様の結論が得られました。

米。 23.1

米。 23.2

カムの中心と構造プロファイルの構築。

直線的に移動するプッシャーを備えたカム機構の設計の第 2 段階を実行するための初期データ (カム プロファイルを構築するため) は次のとおりです。 A) ポイント移動グラフプッシャー (図 23.1 を参照) b および 23.2、a)、b) 設計要件を考慮した条件から求めたカムの初期半径 (図 23.1 を参照) d)、c) 偏心 e プッシャー。 検討中の例では、正しいですが、ゼロに設定することもできます。

カムの中心プロファイルを構築するには、モーション反転手法が使用されます。条件付きで、機構全体に軸の周りの回転が与えられます。 0 絶対値がカムの角速度と等しい角速度 () を持つカム、しかしそれとは反対に向けられています。 同時にカムが停止し、それまで動かなかったラック 3 () が回転し始めます (図 23.2 を参照)。 b )、逆方向の運動では角速度が発生します。 この回転中に軸はミネソタ州 偏心してラックガイドに取り付けられたプッシャー 2 e 、カムの直接的な(つまり真の)動きの回転角度と絶対値で等しい角度でスタンドと一緒に時計回りに回転します。 軸回転角度ミネソタ:

(23.2)

MN軸 一定の距離を保ちながら中心0からのe (したがって、軸は常に半径の円に接触します) e )。 式 (23.2) は運動反転方程式と呼ばれます。

構築は、半径のある円上の点を任意に選択することから始まります (図 23.2 を参照)。 V )、プッシャーの軸が描かれ、半径のある円の右側 (離心率が右側に設定されているため) に接触します。 ここで、建設の規模は次のようにみなされます(図23.2を参照)。)。 これにより、プッシャ2のローラ中心がその点に位置する初期位置が決定される。 さらに、(23.2) によれば、軸はミネソタ州 プッシャーは、カムの回転角度と絶対値で等しい角度でラックの逆転方向に回転します (図 23.2 を参照)。)。 アングル等の施工を簡略化するため。 直線からレイオフし、半径のある円上に点をマークするなど。 (図 23.2 を参照) V )。 これらの点を通って、半径のある円に接する直線を引きます。これが軸の位置になります。ミネソタ州 プッシャーとカムの関係。 ポイントなどから セグメントを配置します。 など、点の動きを表現します。図面スケール上のプッシャー (縦軸は図 23.2 のグラフから取得したものです)。 点は中心が占めるべき位置ですカムに対する従動ローラー。 したがって、カムの中心プロファイルはこれらの点を通過します (図 23.2 を参照)。Ⅴ)。

カムの構造プロファイルは中央のプロファイルから等距離です。 その点は、ローラー 4 の半径に等しい距離で中心プロファイルから離れています。構造プロファイルは半径の円の包絡線として構築され、その中心はカムの中心プロファイル上にあります (図 23.2 を参照) 、 V )。 ローラーの半径は設計上の理由から、通常は次の範囲で割り当てられます。 ただし、それは常に中心プロファイルの最小曲率半径より小さくなければなりません。 構造プロファイルの初期半径は、差として決定されます。

カム機構の設計

ロッカーローラープッシャー付き。

ロッカーアームを備えたカム機構を設計するための初期データは次のとおりです。 1. 回路図カム機構 (図 23.3 を参照)あ ); 2) 中心速度の変化の法則カムの回転角度に応じてプッシャーローラー 2 I (図 23.1、a を参照) ); 3) プッシャー 2 の長さ (図 23.3 を参照) A); 4) 点Bの経路 ある極端な位置から別の極端な位置までの円弧経路に沿ったプッシャー(またはプッシャーの最大回転角度)。 5)カムの角速度とその方向(この場合、カムが逆転する可能性は許容される)。 b) カムの回転の全位相角: (図 23.1 を参照) bと図。 23.3インチ ); 7) 許容圧力角

ロッカー アーム プッシャーを備えた機構の設計手順は、直線的に移動するプッシャーを備えた機構の設計手順と同じです。私 )カム機構の主な寸法、すなわち、必須の設計条件が満たされるカムの初期半径と中心距離の決定。 2) カムプロファイルの構築。

カム機構の主な寸法の決定。

カムの回転中心の許容位置の領域を決定するために、点の軌跡に基づいてグラフが構築されますで 。 この構築の出発点は図に示されているものです。 23.1、点の速度の変化のグラフとみなせるグラフ時間的または点速度伝達関数の変化のグラフとして。 したがって、点の円弧座標の値のグラフは、プッシャーは依存関係をグラフィカルに統合することによって構築されます (図 23.1 を参照)。 a、b ); スケールは、講義 22 で指定された式を使用して計算されます。

プッシャーが直進する機構の場合、グラフを作成する際にはすべての直線寸法が考慮されます。同じスケールで(図では 23.3、 b 図では同等とみなします。 23.1、 b )。 図のプッシャー 2 の長さは 23.3、 b 線分と点速度の伝達関数で表されます。- 式 (23.1) のいずれかを使用して計算されたセグメント。

点軌道上の初期位置からで スケール上で、その円弧座標が図のグラフを使用してプロットされます。 23.1 b ; たとえば、など。 (図 23.3 を参照) b )。 除去フェーズのセグメント (位置 0 ~ 5) は、速度に対して垂直に構築されます。 プッシャーに沿って、これらのセグメントを構築するためのルールに従って (図 22.2 を参照)、 V )、ポイント軌道の左側カムの回転方向は反時計回りであるためです。 除去フェーズのグラフは、伝達関数セグメントの終点を通過します (図 23.3 を参照)。 b )。 極点からプッシャーを削除するフェーズとその結果のグラフの条件を満たすために、2 つの境界光線が、直線に対してある角度で、プッシャーに対して垂直に、それぞれその位置と (したがって方向に平行に) 描かれます。プッシャーのこれらの位置での速度)。

エリア内でカムの回転中心を選択した場合私 、交点の下の境界光線によって形成されます (図 23.3 を参照) b )、カムが反時計回りに回転しても、圧力角は許容値()を超えません。 これに対応するために、カムが逆転したとき(時計回りに回転したとき)、プッシャーが同相で取り外されたときも同様です(図 23.3 を参照)。 b )、セグメントを構築するためのルールを使用してグラフ 0 の右側を構築します。 Dで。 (図 22.2、d を参照) )。 直線(セグメントに垂直)に対してある角度で点から引かれた境界光線は、点を与えます。 0 から引かれた光線との交点 (図 23.3、 b )。 これらの光線はグラフと交差してはなりません。

米。 23.3

地域 II 、交点の下の境界光線によって形成されます (図 23.3 を参照) b ) - リバースモードにおけるカムの回転中心の位置の許容範囲です。 カムの回転中心をこの領域内に設定することで、機構のどの位置でも要求される設計条件を満たします。

設計条件が機構の最小寸法である場合、中心 0 カムの回転は光線の交点に割り当てられます (図 23.3 を参照)。 b )。 中心距離が指定されている場合、カムの回転中心は半径の円弧上、たとえば点で選択されます。 それから。 この場合、回転の中心は必ず領域内になければなりません。。 得られる初期半径 (または) は、カム、そのシャフト、ローラーの強度を確保するのに十分なものでなければなりません。

伝達関数セグメントの性質により、回転中心から引いた直線間の角度 0 セグメントに垂直な、したがって圧力角に等しい速度に平行な直線のグラフ上の任意の点まで機構の位置 (図 22.2 を参照) CD )。 さまざまな位置での圧力角を決定すると、カム機構の逆動作モードの条件が満たされていることを示すグラフが作成されます。 (図 23.3 を参照) G)

カムプロファイルの構築。

設計の第 2 段階 (カム プロファイルの構築) を実行するための初期データは、点の円弧座標のグラフです。で プッシャー 2 (図 23.3 を参照) V )、カムの初期半径と最初の段階で見つかった中心距離(図 23.3 を参照) b)。

カム プロファイルを構築するには、動作反転方法が使用されます。回転しているカムを条件付きで停止するには (図 23.3、a を参照)、機構全体が軸の周りを回転します。 0 角速度はカムの角速度と絶対値が等しいが、その方向は逆である。 逆運動する固定柱3は角速度を受ける。 この速度では、スタンドに属するセグメントは従来通り人種の矢印に沿って回転します。 運動反転方程式は次の形式になります。

(23.3)

逆の動きでポイントと は、建設規模が収まる半径の円を表します (図 23.3 を参照)。 d )。 この円上の任意の点に、中心の初期位置をマークします。プッシャーを回す。 次に、式 (23.3) に従って、セグメントは OS カムの回転角度と絶対値が等しい角度でラックの逆方向に回転し、軌道上の点をマークします彼女の立場。 マークされた位置ごとに、半径の円弧が描かれ、半径の円上にある点から円弧の座標が円弧上にプロットされます。 ポイント押し手。 この目的のために、図のグラフを使用します。 23.3、 V 。 滑らかな曲線で結ばれた点がカムの中心プロファイルを形成します (図 23.3 を参照)。 d )。 中心プロファイルから等距離の構造プロファイルの構築は、図で実行された構築と同様に実行されます。 23.2、 V.

上記の設計方法は、ローラーフォロアを備えたカム機構だけでなく、プッシャー 2 の端が丸い機構にも使用されます (図 22.1 を参照)。 b )。 このような機構のカムの構造プロファイルも中心プロファイルから等距離にあり、その点は中心プロファイルから丸みの曲率半径に等しい距離だけ離れています。


講義用のテスト問題 N22とN23。

  1. さまざまな機械や装置に広く使われているカム機構にはどのような特徴があるのでしょうか?
  2. カム機構のデメリットは何ですか?
  3. 最も一般的な平面カム機構とスペースカム機構の図を描きます。
  4. 最上位ペアの交換方法によってカム機構はどのように分かれるのでしょうか?
  5. カム機構プッシャーの動作の主な段階と、それらを構成するカムの回転角度を列挙しますか?
  6. カム機構の主な合成段階について教えてください
  7. 高速カム機構に適用するのに合理的なプッシャー運動の法則は何ですか?またその理由は何ですか?
  8. 与えられた許容圧力角で並進移動するプッシャーを備えた機構内のカムの回転中心の重なりをどのように決定するか?
  9. ローリングプッシャーを備えた機構において、特定の許容圧力角と中心距離におけるカムの回転中心の位置を決定するにはどうすればよいですか?
  10. カム機構のローラーの半径はどのような観点から選ばれるのでしょうか?
  11. カムの理論的 (中心) プロファイルを使用してピッチ (建設的) プロファイルを構築するにはどうすればよいですか?

あなたに興味があるかもしれない他の類似作品.vshm>

1944. フラットリンケージの設計 486.03 KB
ヒンジ付きレバー機構の大部分は、駆動リンクの均一な動きを従動リンクの不均一な動きに変換し、従動リンクの位置の非線形関数を持つ機構に属します。 設計の最初の段階では、必要なタイプと運動法則を提供する機構の運動図を選択します。 第 2 段階では、強度と耐久性を確保するための機構の設計形式の開発が含まれます。 デザインの第 3 段階は、技術的、技術的、経済的な開発です。
1958. マルチスレッド遊星機構の設計 89.38KB
この場合の設計タスクは、機構の構造的合成と運動学的合成に分けることもできます。 構造合成中、機構の構造図は運動学的に決定され、歯車の半径は歯数に正比例するため、歯車の歯数が決定されます。標準的な機構の場合、最初の作業はセットからスキームを選択することになります。標準的なスキームの。 機構図を選択した後、ギアボックスの委託条件を確実に満たすホイールの歯数の組み合わせを決定する必要があります。
14528. 機構精度 169.25KB
さらに、寸法の精度、表面の相対位置、表面の粗さといった幾何学的パラメータの精度が最も重要です。 互換性は統一と標準化の基礎であり、これにより、標準ユニットや部品の過剰な多様性を排除し、高性能特性を備えた機械部品の標準サイズを可能な限り最小限に設定することが可能になります。 転動体や輪の製造精度を大幅に高めることなく、規定の組立精度を確保することが可能です...
1946. メカニズムのダイナミクス 374.46KB
ダイナミクスの問題: ダイナミクスの直接問題 - 与えられた運動法則に従って機構の力を解析し、そのリンクに作用する力と、機構の運動学的ペアにおける反作用を決定します。 機械装置の機構には、動作中にさまざまな力がかかります。 これらの駆動力は抵抗力であり、有用な抵抗力、重力、摩擦、その他多くの力とも呼ばれます。 それらの作用により、加えられた力が機構に 1 つまたは別の運動法則を与えます。
1950. バランスをとるメカニズム 272KB
これは、一般的な場合、リンクの質量中心の加速度の大きさと方向が変化するという事実により発生します。 したがって、機構を設計する際の課題は、指定された動的荷重を確実に完全または部分的に除去するために、機構リンクの質量を合理的に選択することです。 この場合、他のすべてのリンクは角加速度で移動し、質量中心 S1 S2 S3 は線形加速度になります 3。すべての移動リンクのシステムの質量は  mi 0 であるため、質量中心の加速度は次のようになります。この系の S は次と等しいはずです...
1943. 機構の構造的合成 360.1KB
現在、伝統的に、新しく設計されたマシンの構造の選択は、開発者の経験と資格に基づいて直感的に行われるか、構造グループを階層化することによって行われます。 構造グループを使用した単純な機構と複雑な機構の構造合成。 現在、閉じた運動連鎖を持つ機構を作成する最も一般的な方法は、要素機構に構造グループまたは ccyp グループを付加する方法です。 外部に対して可動性がゼロの運動連鎖
6001. 機構と機械の理論 1.52MB
機構の任意の点における線形座標の一般化座標への依存性は、対応する座標軸への投影における特定の点の位置の一次関数です。 一般化座標に対する点の位置の一次関数の一次導関数、対応する座標軸への投影における特定の点の線形伝達関数は、線形速度の類似物、合計速度 t と呼ばれることがあります。一般化された位置に関する位置の一次関数の二次導関数...
13646. 電磁気メカニズムの研究 13.5KB
この研究の目的は、一定の条件で動作するときの電磁石の静的牽引特性を実験的に研究することです。 交流電流直流電磁石の電磁加減速方法の研究。
1945. 機構の運動学的特性 542.36KB
このメカニズムの主な目的は、必要な動きを実行することです。 運動学的特性には、初期リンクの運動法則に依存せず、機構の構造とそのリンクの寸法によってのみ決定され、一般的な場合には一般化された座標に依存する特性も含まれます。 分析的またはグラフィック形式で表される機構の運動連鎖のベクトル輪郭の分析に基づく幾何学的なもの。 機構の点の座標を変換する方法。行列または...
11321. レバー機構の運動学的計算 2.97MB
このコースの目的は、機構の合成の基本的な方法を研究することです。これにより、設計者は、与えられた運動学的および動的特性に基づいて機構のパラメーターを見つけるだけでなく、追加の多くの要素を考慮して、その最適な組み合わせを決定することもできます。条件。

カム機構のメリット

VKP はすべての機構がスモールリンクであるため、機械全体の寸法を小さくすることができます。

合成と設計が容易。

VCP を備えたメカニズムは、伝達関数をより正確に再現します。

出力リンクのさまざまな運動法則を提供します。

VKP を備えた機構には、力または幾何学的閉鎖が必要です。

VCP の接触力は NCP よりもはるかに高く、摩耗につながります。 2 つのプロファイルは形状を失い、その結果、主な利点が失われます。

カムプロファイルの加工が難しい。

高速動作や大きな電力の伝達ができない。

カム機構の主なパラメータ

カム プロファイルは、2 つの同心円の円弧と、1 つの円から別の円に移行する曲線で構成できます。

ほとんどのカム機構は、周期が等しいサイクリック機構です。 カムが回転すると、プッシャーは上下の位置で停止しながら往復または往復回転運動をします。 したがって、プッシャーの動作サイクルでは、一般に、遠ざかる、遠くに立っている(または立っている)、近づいている、近くに立っているという 4 つのフェーズを区別できます。 これによると、カムの回転角または位相角は次のように分類されます。

取り外し(上昇)角度

遠方(上)スタンドの角度

進入角(降下)

スタンド付近(下)の角度。

3 つの角度の合計は、作動角と呼ばれる角度を形成します。

特定の場合には、上部と下部の高さの角度が欠落している可能性があります。

機構カムは 2 つのプロファイルによって特徴付けられます。

センター(または理論的)

建設的(または効果的)。

建設的なカムの外側の作動プロファイルを指します。

理論的または中心的カム座標系において、ローラーがカムの構造プロファイルに沿って移動するときのローラーの中心 (またはプッシャーの動作プロファイルの丸み) を表すプロファイルです。

段階カムの回転角といいます。

プロファイル角度は、理論的プロファイルの現在の動作点の角度座標と呼ばれ、現在の位相角に対応します。 一般に、位相角はプロファイル角と等しくありません。

プッシャーの動きとカムの回転角度は、リフト段階の開始時からカウントされます。 ローラー中心の最も低い位置から、カムの回転中心から離れた位置にあります。 この距離は - と呼ばれます 初期半径またはゼロ初期ワッシャーの半径であり、カム中心プロファイルの最小半径ベクトルと一致します。

出力リンクの最大変位は次のように呼ばれます。 プッシャーストローク.


プッシャーの軸外 - 偏心 - 並進運動するプッシャーを備えたカムの場合。

中心距離 - カムの回転中心とロッカー アームの固定点の間の距離 - ロッカー プッシャー付きカムの場合。

圧力角は、接触点での速度とプロファイルの法線 (つまり、力の方向) の間の角度です。 通常、この角度は または で指定されます。 そして、ある接触点では、2 つのプロファイルは異なる圧力角を持ちます。

摩擦を考慮しないと、力はプロファイルの接触点の共通法線に沿って方向付けられます。 したがって、カム機構では、圧力角はカムの中心プロファイルに対する法線とローラーの中心の速度との間の角度です。

カム機構の寸法は、運動学的、動的、構造的条件から決定されます。

  1. 運動学的条件 - プッシャーの所定の動きの法則の再現を保証します。
  2. ダイナミック – 高効率を確保し、妨害を防ぎます。
  3. 構造 – 機構の最小寸法、強度、耐摩耗性を確保します。

プッシャー速度アナログの幾何学的解釈

カムとプッシャーで VCP が形成されます。 プッシャーは並進運動するため、その速度はガイドと平行になります。 カムは回転運動を実行するため、その速度は現在の点での回転半径に対して垂直に方向付けられ、プロファイルの相対スライド速度はそれらの共通接線に沿って方向付けられます。

ここで、 a は VCP の係合極であり、中心線との接触点におけるプロファイルの法線の交点に位置します。 なぜなら プッシャーは並進運動し、その回転中心は無限遠にあり、中心線はカムの中心を通って速度に対して垂直に走ります。

速度三角形と は、互いに垂直な辺を持つ三角形に似ています。 それらの対応する辺の比率は一定であり、類似係数: に等しいため、

それらの。 プッシャー速度の類似物は、プッシャー速度に垂直な線分で表され、接触法線に平行でカムの中心を通過する直線で切断されます。

合成処方: ローラーの中心からプッシャーの速度に垂直に引いた光線の延長で、ある長さのセグメントを点から脇に置き、接触法線に平行な直線をこのセグメントの端を通って引くとします。 、すると、この直線は駆動リンク (カム) 点の回転中心を通過します。

したがって、プッシャー速度の類似物を表すセグメントを取得するには、プッシャー速度ベクトルをカムの回転方向に回転させる必要があります。

圧力角がカム機構の動作に及ぼす影響

他の条件が等しい場合、カムの初期半径が減少すると、圧力角が増加します。 圧力角が増加すると、機構リンクに作用する力が増加し、機構の効率が低下し、自己ブレーキ(機構のジャミング)の可能性が生じます。 駆動リンク (カム) からの力がなければ、従動リンク (プッシャー) をその場所から動かすことはできません。 したがって、カム機構の信頼性の高い動作を確保するには、どの位置でも圧力角が一定の許容値を超えないように主要な寸法を選択する必要があります。

ロッカー プッシャーを備えたカム機構の主な寸法を決定する場合、機構のどの位置でも圧力角が以下を超えなければ十分です。漸進的に移動するローラー プッシャーを備えたカム機構の場合は、圧力角が以下の圧力角を超えないようにするだけで十分です。機構のどの位置でも角度が超えないこと。

カム機構の合成。 合成ステージ

カム機構を合成するとき、および他の機構を合成するときは、多くの問題が解決されます。TMM コースではそのうちの 2 つが考慮されます。 ブロック図機構リンクの主な寸法(カムプロファイルを含む)の決定。

合成の最初の段階は構造的な段階です。ブロック図はメカニズムのリンクの数を決定します。 運動学的ペアの数、種類、および可動性。 冗長接続の数とローカル モビリティ。 構造合成中に、各冗長接続とローカル モビリティのメカニズム図への導入を正当化する必要があります。 構造図を選択する際の決定条件は、指定されたモーション変換のタイプ、入力リンクと出力リンクの軸の位置です。 機構内の入力動作は出力に変換されます。たとえば、回転運動から回転運動、回転運動から並進運動などに変換されます。 軸が平行の場合、フラットな機構図が選択されます。 軸が交差したり交差したりする場合は、空間図を使用する必要があります。 運動学的機構では負荷が小さいため、先端が尖ったプッシャーを使用できます。 動力機構では、耐久性を高めて摩耗を減らすために、機構回路にローラーが導入されたり、最上位ペアの接触面の減少した曲率半径が大きくなったりします。

合成の第 2 段階は計量です。この段階で、機構リンクの主な寸法が決定され、機構内の運動の所定の変換法則または所定の伝達関数が得られます。 上で述べたように、伝達関数は機構の純粋に幾何学的特性であるため、計量合成の問題は時間や速度とは無関係に、純粋に幾何学的な問題になります。 計量合成の問題を解決する際に設計者を導く主な基準は次のとおりです。寸法を最小化し、その結果として質量を最小化する。 上部蒸気の圧力角を最小限に抑える。 技術的に進歩したカムプロファイル形状を取得します。

ローラー半径の選択(プッシャーの作業領域の丸み)

ローラーの半径を選択するときは、次の考慮事項が使用されます。

ローラーは単純な部品であり、加工も簡単(回転→熱処理→研磨)です。 したがって、その表面で高い接触強度を確保することができる。 カムでは、作動面の構成が複雑なため、これを確実にするのはさらに困難です。 したがって、通常、ローラーの半径は構造プロファイルの最初のワッシャーの半径より小さく、理論上のカムプロファイルの最初のワッシャーの半径という関係を満たします。 この比率を遵守すると、カムとローラーの両方の接触強度がほぼ同等になります。 ローラーは接触強度が大きくなりますが、半径が小さいため、回転速度が速くなり、表面の作用点がより多くの接触に関与します。

カムの構造プロファイルは尖っていたり、切り取られていてはなりません。 したがって、ローラー半径の選択には制限が課せられます。ここで、 は理論上のカム プロファイルの最小曲率半径です。

ローラー半径は標準範囲の直径から選択することをお勧めします。 ローラーの半径が大きくなると、プッシャーの寸法と重量が増加し、機構の動的特性が悪化する(固有振動数が低下する)ことを考慮する必要があります。 ローラーの半径を小さくすると、カムの寸法と重量が増加します。 ローラーの回転速度が上がると耐久性が低下します。

講義 17-18

L-17まとめ: カム機構の目的と範囲、主な利点と欠点。 カム機構の分類。 カム機構の基本パラメータ。 カム機構の構造。 カム機構の動作のサイクログラム。

L-18 要約:プッシャーモーションの典型的な法則。 より高次の運動学的ペアにおける運動伝達時の機構の性能と圧力角の基準。 計量合成の問題についての記述。 合成の段階。 徐々に動くプッシャーを備えたカム機構のメートル合成。

質問をコントロールします。

カム機構:

クラチコフより高い運動学的ペアを備えた 3 リンク機構と呼ばれ、入力リンクはカムと呼ばれ、出力リンクはプッシャー (またはロッカー アーム) と呼ばれます。 多くの場合、上位ペアの滑り摩擦を転がり摩擦に置き換え、カムとプッシャーの両方の摩耗を軽減するために、機構設計に追加のリンク (ローラーと回転運動学ペア) が組み込まれます。 この運動学的ペアの移動度は機構の伝達関数を変更せず、局所的な移動度です。

目的と範囲:

カム機構は、カムの回転運動または並進運動を従動子の往復運動または往復運動に変換するように設計されています。 同時に、2つの可動リンクを備えた機構では、複雑な法則に従った運動の変換を実現することができます。 重要な利点カム機構は、出力リンクの正確な位置合わせを保証する機能です。 この利点により、最も単純なサイクリック自動化デバイス (カムシャフト) や機械式コンピューティング デバイス (算術計、カレンダー機構) での広範な使用が決まりました。 カム機構は 2 つのグループに分類できます。 最初の機構は、所定の運動法則に従ってプッシャーの動きを保証します。 2 番目のグループの機構は、出力リンクの指定された最大動作、つまりプッシャーのストロークのみを提供します。 この場合、この動作を実行する法則は、動作条件と製造技術に応じて一連の標準運動法則から選択されます。

カム機構の分類:

カム機構は次の基準に従って分類されます。

  • スペース内のリンクの位置による
    • 空間的な
    • フラット
  • カムの動きによって
    • 回転式
    • プログレッシブ
  • 出力リンクの動きにより
    • レシプロ(プッシャー付)
    • 往復回転(ロッカーアーム付)
  • ビデオの入手可能性に応じて
    • ローラー付き
    • ローラーなし
  • カムの種類によって
    • ディスク(平ら)
    • 円筒形
  • 出力リンクの作動面の形状に応じて
    • フラット
    • 尖った
    • 円筒形
    • 球状
  • 上位ペアの要素を閉じる方法による
    • 幾何学的な


強制閉鎖中、プッシャー上のカムの接触面の作用によってプッシャーが取り外されます (駆動リンクはカムであり、被駆動リンクはプッシャーです)。 接近時のプッシャーの動きは、カムが駆動リンクではなく、スプリングの弾性力やプッシャーの自重の力によって行われます。 幾何学的閉鎖では、遠ざかるときのプッシャーの動きはプッシャー上のカムの外側作動面の作用によって実行され、近づくときはプッシャー上のカムの内側作動面の作用によって実行されます。 動作のどちらの段階でも、カムが先行リンクであり、プッシャーが従動リンクです。

カム機構動作のサイクログラム

米。 2

ほとんどのカム機構は、サイクル周期が 2p のサイクリック機構です。 プッシャーの動作サイクルでは、一般に 4 つの段階に分けることができます (図 2): (カムの回転中心に対して) 最も近い位置から最も遠い位置までの移動、最も遠い位置 (または最も遠い位置に立つ) 、最も遠い位置から最も近い位置と最も近い位置に立つ(最も近い位置に立つ)で戻ります。 これによると、カムの回転角または位相角は次のように分類されます。

  • オフセット角 jy
  • 遠い立ち角度 jd
  • 戻り角
  • 立ち角度に近い jb .

φ y + φ d + φ vは作用角と呼ばれ、指定されます。 φr.したがって、

φ y + φ d + φ c = φ r。

カム機構の主なパラメータ

機構カムは、中心 (または理論的) プロファイルと建設的プロファイルの 2 つのプロファイルによって特徴付けられます。 下 建設的なカムの外側の作動プロファイルを指します。 理論的または中心的カム座標系において、ローラーがカムの構造プロファイルに沿って移動するときのローラーの中心 (またはプッシャーの動作プロファイルの丸み) を表すプロファイルです。 位相角はカムの回転角と呼ばれます。 プロファイル角度 ディ現在の位相角に対応する、理論的プロファイルの現在の動作点の角度座標です。 .
一般に、位相角はプロファイル角と等しくありません。 ジディ。
図では、 図 17.2 は、並進運動を伴うオフアクシスとスイング (往復回転運動を伴う) という 2 種類の出力リンクを備えたフラット カム機構の図を示しています。 この図はフラットカム機構の主なパラメータを示しています。

図 17.2:

理論上のカム プロファイルは、通常、ri = f(di) の関係によって極座標で表されます。
ここで、ri はカムの理論的プロファイルまたは中心プロファイルの現在点の半径ベクトルです。

カム機構の構造

ローラー付きカム機構には、異なる2つの動きがあります。 機能的な目的: W 0 = 1 - 動きの変換が所定の法則に従って実行されるメカニズムの主要な可動性、 Wm = 1 - ローカルモビリティは、上位ペアの滑り摩擦を転がり摩擦に置き換えるためにメカニズムに導入されます。

カム機構の運動学的解析

カム機構の運動学的解析は、上記のいずれかの方法で実行できます。 出力リンクの典型的な運動法則を使用してカム機構を研究する場合、運動学図の方法が最もよく使用されます。 この方法を適用するには、運動図の 1 つを定義する必要があります。 カム機構は運動解析中に特定されるため、その運動図とカムの構造プロファイルの形状がわかります。 変位図は次の順序で作成されます (軸外で並進移動するプッシャーを備えた機構の場合)。

  • ローラーの半径と等しい半径を持つ円の集合が、カムの構造プロファイルに接するように構築されます。 このファミリーの円の中心が滑らかな曲線で結ばれ、カムの中心または理論上のプロファイルが得られます。
  • 半径の円が結果の中心プロファイルに適合します r0 および r0 +hAmax 、偏心の大きさが決まります e
  • 半径の円の円弧と一致しない領域のサイズによって r0 および r0 +hAmax 、位相角 jwork、jу、jдв、jс が決定されます。
  • 円弧 r は動作位相角に対応し、いくつかの個別のセクションに分割されます。 分割点を通って、偏心半径の円の接線方向に直線が引かれます (これらの線は、カムに対するプッシャーの移動におけるプッシャーの軸の位置に対応します)。
  • これらの直線上で、中心プロファイルと半径円の間に位置するセグメントが測定されます。 r0 ; これらのセグメントはプッシャー ローラーの中心の動きに対応します。 SВi
    受信した動きに基づいて SВi プッシャーローラーの中心の位置関数の図が構築されます SВi= f(j1)

図では、 図 17.4 は、中央 (e=0) 並進運動するローラー フォロアを備えたカム機構の位置関数を構築する図を示しています。

プッシャーモーションの典型的な法則 .

カム機構を設計する場合、プッシャーの運動法則は一連の標準的な運動法則から選択されます。

典型的な運動法則は、ハードおよびソフトの衝撃を伴う法則と、衝撃を伴わない法則に分けられます。 動的荷重の観点からは、ショックレスの法則が望ましいです。 ただし、このような運動法則を備えたカムは、より正確で複雑な機器を必要とするため、技術的により複雑になり、そのため製造コストが大幅に高くなります。 強い影響を与える法則の適用範囲は非常に限られており、低速で耐久性の低い重要ではないメカニズムで使用されます。 精度と耐久性に対する厳しい要件が要求される高速動作の機構では、ショックレスの法則を備えたカムを使用することをお勧めします。 最も広く普及しているのは、ソフトインパクトを伴う運動法則であり、これを利用することで、製造コストとコストの合理的な組み合わせを確保することができます。 性能特性機構。

運動法則の種類を選択した後、通常は運動図の方法を使用して、機構の幾何学運動学的研究が実行され、プッシャーの運動の法則と最初の伝達関数のサイクルごとの変化の法則が決定されます。 (見る。 講義3- 運動図の方法)。

表17.1

試験に向けて

運動伝達時の性能基準と圧力角 V より高い運動学的ペア。

圧力角法線の位置を定義します ピー速度ベクトルと従動リンクの接触点を基準とした最も高いギアボックス内 (図 3、 a、b)。 その値は、機構の寸法、伝達関数、およびプッシャーの動きによって決まります。 S .

運動伝達角γ- ベクトル間の角度 υ2そして υ相対。接触点にあるプッシャーの点の絶対速度および相対 (カムに対する) 速度 (図3、 a、b):

カムとプッシャー間の摩擦力を無視すると、プッシャーを動かす力(駆動力)は圧力となります。 Qポイントでプッシャーに適用されるカム そして共通の法線に沿って方向付けられます ピーカムとフォロワーのプロファイルに。 力を分解しましょう Q相互に垂直な成分に分割 Q1そして Q 2 つ目のうち、1 つ目は速度の方向に向けられています υ 2.Q1プッシャーにかかるすべての有益な (技術的タスクの実行に関連する) 抵抗と有害な (摩擦力) 抵抗を克服しながら、プッシャーを動かします。 力 Q2プッシャーとスタンドによって形成される運動学的ペアの摩擦力が増加します。

明らかに角度が下がると γ Q1減少と強度 Q 2が増えます。 ある角度で γ その力が判明するかもしれない Q1プッシャーにかかるすべての抵抗に打ち勝つことができず、機構が動作しなくなります。 この現象はと呼ばれます ジャミング仕組みと角度 γ 、それが発生する角度はくさび角と呼ばれます γシール

カム機構を設計する際には、圧力角の許容値が規定されます。 余分な、条件の充足を保証する γ ≥ γ min > γ close , つまり、現在の角度 γ カム機構のいかなる箇所においても、最小伝達角度が 未満であってはなりません。 γm ジャミング角度を大幅に超えています γ閉じる .

プッシャーが徐々に動くカム機構の場合は、 γ 最小 = 60°(図3、 ) そして γmin = 45°- 回転プッシャーを備えた機構 (図 3、 b).

カム機構の主な寸法の決定。

カム機構の寸法は、上部ペアの許容圧力角を考慮して決定されます。

カムの回転中心位置が満たすべき条件 について 1 : プロファイルのすべての点での除去段階中の圧力角は、許容値より小さくなければなりません。 したがって、点の位置の面積をグラフィカルに について 1 プッシャーに属する中心プロファイル点の可能な速度のベクトルに対して許容圧力角で引かれた一連の直線によって決定できます。 プッシャーとロッカーアームに関する上記の図解を図に示します。 17.5。 削除フェーズでは、依存関係図が構築されます。 S B = f(j1)。ロッカーのポイントなので 半径円の円弧に沿って移動します IBC、 次に、ロッカー アームを備えた機構の場合、図は曲線座標で作成されます。 ダイアグラム上のすべての構築は同じスケールで実行されます。 m l = m Vq = m S 。

カム機構を合成するときは、他の機構の合成と同様に、多くの問題が解決されます。TMM コースでは、そのうちの 2 つが考慮されます。
構造図の選択と機構リンクの主な寸法(カムプロファイルを含む)の決定。

合成ステージ

合成の最初の段階は構造的な段階です。ブロック図はメカニズムのリンクの数を決定します。 運動学的ペアの数、種類、および可動性。 冗長接続の数とローカル モビリティ。 構造合成中に、各冗長接続とローカル モビリティのメカニズム図への導入を正当化する必要があります。 構造図を選択する際の決定条件は、指定されたモーション変換のタイプ、入力リンクと出力リンクの軸の位置です。 機構内の入力動作は出力に変換されます。たとえば、回転運動から回転運動、回転運動から並進運動などに変換されます。 軸が平行の場合、フラットな機構図が選択されます。 軸が交差したり交差したりする場合は、空間図を使用する必要があります。 運動学的機構では負荷が小さいため、先端が尖ったプッシャーを使用できます。 動力機構では、耐久性を高めて摩耗を減らすために、機構回路にローラーが導入されたり、最上位ペアの接触面の減少した曲率半径が大きくなったりします。

合成の第 2 段階は計量です。この段階で、機構リンクの主な寸法が決定され、機構内の運動の所定の変換法則または所定の伝達関数が得られます。 上で述べたように、伝達関数は機構の純粋に幾何学的特性であるため、計量合成の問題は時間や速度とは無関係に、純粋に幾何学的な問題になります。 計量合成の問題を解決する際に設計者を導く主な基準は次のとおりです。寸法を最小化し、その結果として質量を最小化する。 上部蒸気の圧力角を最小限に抑える。 技術的に進歩したカムプロファイル形状を取得します。

計量合成の問題点の表明

与えられた:
機構のブロック図。 出力リンクの運動法則 S B = f(j1)
またはそのパラメータ - h B、jwork = jу + jdv + jс、許容圧力角 - |J|
追加情報: ローラー半径 r p、カムシャフト径 d c、偏心 e(プッシャーが順移動する機構の場合) , 中心距離 あるウィスとロッカーの長さ BC(出力リンクが往復回転する機構の場合)。

定義する:
初期カムワッシャーの半径 r 0 ; ローラー半径 r 0 ; カムの中心の座標と構造プロファイル r i = f(di)
指定されていない場合は、偏心率 e と中心距離 ある w.

許容圧力角に基づいたカム機構の設計アルゴリズム

網掛け部分は中心選択が可能です。 さらに、機構の最小寸法を確保するように選択する必要があります。 最小半径 r1 * 結果の領域の頂点を接続すると、点が得られます。 約1* 、原点付き。 この半径を選択すると、除去段階中のプロファイル内のどの点でも、圧力角は許容値以下になります。 ただしカムは偏心して作る必要がある e* 。 偏心がゼロの場合、最初のワッシャーの半径は次の点によって決まります。 O e0 。 半径は以下に等しい レ0 つまり、最小値を大幅に超えています。 出力リンク - ロッカーアームの場合、最小半径は同様に決定されます。 カムスターター半径 r1aw 与えられた中心距離で ああ 、ポイントによって決定されます 1awについて 、半径 aw の円弧と対応する領域の境界との交点。 通常、カムは一方向のみに回転しますが、修理作業を行う場合には、カムを逆方向に回転できる、つまりカムシャフトの逆転可能性を確保することが望ましいです。 進行方向を変えると、除去とアプローチの段階が変わります。 したがって、逆に移動するカムの半径を選択するには、考えられる 2 つの取り外し段階を考慮する必要があります。つまり、2 つの図を作成する必要があります。 S B= f(j1)考えられる移動方向ごとに。 可逆カム機構の半径とそれに関連する寸法の選択を図に示します。 17.6。

この写真には:

r1- 初期カムワッシャーの最小半径。
r 1 インチ- 所定の偏心における初期ワッシャーの半径。
r1aw- 所定の中心距離における最初のワッシャーの半径。
ああ、0- 最小半径での中心距離。

ローラー半径の選択

カム機構の設計

まとめ: カム機構。 目的と範囲。 カムプッシャーの運動法則の選択。 カム機構の分類。 主なパラメータ。 スピードアナログの幾何学的解釈。 カム機構の動作に対する圧力角の影響。 カム機構の合成。 合成の段階。 ローラーの半径 (プッシャーの作業領域の丸み) を選択します。

カム機構

多くの機械の作業プロセスでは、その構成に機構が必要になります。その出力リンクの動作は、所定の法則に従って厳密に実行され、他の機構の動作と調整されなければなりません。 このタスクを実行するための最も単純で信頼性が高く、コンパクトなものはカム機構です。

クラチコフといいますより高い運動学的ペアを備えた 3 リンク機構。その入力リンクは と呼ばれます。 、休みの日は プッシャー(またはロッカー)。

あなたの拳でこれは、可変曲率の表面の形で作成された、より高次の運動学的ペアの要素が属するリンクと呼ばれます。

直線的に移動する出力リンクは次のように呼ばれます。 プッシャー、回転(スイング) – ロッカー。

多くの場合、上位ペアの滑り摩擦を転がり摩擦に置き換え、カムとプッシャーの両方の摩耗を軽減するために、機構設計に追加のリンク (ローラーと回転運動学ペア) が組み込まれます。 この運動学的ペアの移動度は機構の伝達関数を変更せず、局所的な移動度です。

出力リンク (プッシャー) の動きを理論的に正確に再現します。 伝達関数によって指定されるプッシャーの動きの法則は、カム プロファイルによって決定され、カム機構の主な特性であり、カム機構の機能特性や動的特性、振動特性が依存します。 カム機構の設計は、プッシャーの運動の法則の割り当て、構造図の選択、主寸法と全体の寸法の決定、カムプロファイルの座標の計算といういくつかの段階に分かれています。

目的と範囲

カム機構は、カムの回転運動または並進運動を従動子の往復運動または往復運動に変換するように設計されています。 カム機構の重要な利点は、出力リンクの正確な位置合わせを保証できることです。 この利点により、最も単純な周期的自動化デバイスや機械式コンピューティング デバイス (算術計、カレンダー機構) での広範な使用が決まりました。 カム機構は 2 つのグループに分類できます。 最初の機構は、所定の運動法則に従ってプッシャーの動きを保証します。 2 番目のグループの機構は、出力リンクの指定された最大動作、つまりプッシャーのストロークのみを提供します。 この場合、この動作を実行する法則は、動作条件と製造技術に応じて一連の標準運動法則から選択されます。

カムプッシャーの運動法則の選択

プッシャーの運動の法則プッシャーの動き(線形または角度)の関数、および時間または一般化された座標に関して取られたその派生関数の 1 つ(先頭リンクの動き)、つまりカムと呼ばれます。 動的観点からカム機構を設計する場合は、機構の動作中に発生する慣性力を決定するのは加速度であるため、プッシャーの加速度の変化の法則に基づいて設計することをお勧めします。

運動法則には 3 つのグループがあり、次の特徴があります。

1. プッシャーの動作には強い衝撃が伴います。

2.プッシャーの動きはソフトな打撃を伴い、

3. プッシャーは衝撃を与えずに動きます。

多くの場合、生産条件ではプッシャーが一定の速度で移動する必要があります。 速度の急激な変化の代わりにこのようなプッシャーの運動の法則を適用すると、加速度は理論的には無限大に達し、動的負荷も無限大になるはずです。 実際には、リンクの弾性により、無限に大きな動的荷重は得られませんが、それでもその大きさは非常に大きいことがわかります。 このような衝撃は「ハード」と呼ばれ、低速メカニズムおよび低プッシャー重量でのみ許容されます。

速度関数には不連続性がないが、プッシャーの加速度関数(または加速度の類似物)には不連続性がある場合、カム機構の動作にソフトな衝撃が伴います。 有限値による加速度の瞬間的な変化は、動的力の急激な変化を引き起こし、これも衝撃の形で現れます。 ただし、これらの攻撃はそれほど危険ではありません。

プッシャーの速度と加速度機能が中断されず、動きの開始時と終了時の速度と加速度がゼロに等しい場合、カム機構はショックなくスムーズに動作します。

プッシャーの運動の法則は、解析形式 (方程式の形式) とグラフィック形式 (図の形式) の両方で指定できます。 コース プロジェクトの課題では、プッシャー ローラーの中心の加速度のアナログにおける次の変化の法則が図の形式で示されています。

    プッシャーの加速度に類似した均一加速変化の法則。プッシャーの動きの均一加速の法則により、設計されたカム機構は各間隔の開始時と終了時にソフトな衝撃を受けます。

    加速度のアナログを変化させる三角法則により、カム機構の衝撃のない動作が保証されます。

    加速度アナログの台形変化の法則により、機構の衝撃のない動作も保証されます。

    加速度アナログの正弦変化法則。 動きの滑らかさが最高に得られます(速度や加速度だけでなく、高次の微分値も滑らかに変化するのが特徴です)。 ただし、この運動法則の場合、同時に最大加速度は 位相角そして、プッシャーのストロークは、加速度類似体における一様に加速された台形変化の法則の場合よりも大きいことがわかります。 この運動法則の欠点は、上昇の開始時に速度が増加し、その結果、上昇自体がゆっくりと起こることです。

    加速度のアナログにおけるコサイン変化の法則により、プッシャー ストロークの最初と最後にソフトな衝撃が生じます。 ただし、コサインの法則により、ストロークの開始時に速度が急激に増加し、終了時に速度が急激に減少します。これは、多くのカム機構を動作させる場合に望ましいことです。

動的荷重の観点からは、ショックレスの法則が望ましいです。 ただし、このような運動法則を備えたカムは、より正確で複雑な機器を必要とするため、技術的により複雑になり、そのため製造コストが大幅に高くなります。 強い影響を与える法則の適用範囲は非常に限られており、低速で耐久性の低い重要ではないメカニズムで使用されます。 精度と耐久性に対する厳しい要件が要求される高速動作の機構では、ショックレスの法則を備えたカムを使用することをお勧めします。 最も広く普及しているのは、ソフトインパクトを伴う運動法則であり、これを利用することで、製造コストと機構の動作特性の合理的な組み合わせを確保することができます。

カム機構の主な寸法は次のように決定されます。 運動学的、動的、構造的条件。 キネマティック条件は、機構が与えられた運動法則を再現しなければならないという事実によって決まります。 動的条件は非常に多様ですが、重要なことは、メカニズムが高効率であることです。 建設的要件は、機構の個々の部品の十分な強度の条件、つまり接触する運動学的ペアの摩耗に対する耐性から決定されます。 設計された機構は最小の寸法でなければなりません。


図6.4。 並進移動プッシャーを備えたカム機構の力解析について。

図6.5。 カム機構の圧力角を調べるには


図では、 6.4 は、先端で終わるプッシャー 2 を備えたカム機構を示しています。 より高い運動学的ペアにおける摩擦を無視すると、カム 1 の側からプッシャー 2 に作用する力。カム 1 のプロファイルに対する法線 n-n によって形成される角度。法線 n-n とプッシャー 2 の移動方向は 圧力角そして に等しい角度は、 透過角度。プッシャー 2 (図 10.5) の平衡を考慮し、すべての力を点 にすると、プッシャーは、有効な抵抗、ばね力、慣性力、プッシャー 2 に作用する力の平衡方程式から、次のようになります。

減少した摩擦力 T は次のようになります。

ガイドの摩擦係数はどこにありますか。

ガイドの長さ;

プッシャーのオーバーハング。

次に、力の平衡方程式から、摩擦力は次の値に等しいことがわかります。

上位ペアとカムシャフトベアリングの摩擦を考慮しない機構の瞬間効​​率は、次の式で求めることができます。

プッシャーの延長 k は次のようになります (図 6.5)。

ここで、b はプッシャー 2 の支持点 N からカムの回転軸 A までの一定の距離です。

カム 1 の最小半径ベクトル

プッシャーを動かす2.

図より 6.5 を取得します

式 (6.7) から次のことが得られます。

その場合、効率は次のようになります。

式(6.9)から、圧力角が増加すると効率が低下することがわかります。 力(図 6.5)が の場合、カム機構がジャムする可能性があります。 効率がゼロの場合、ジャミングが発生します。 次に、等式 (6.9) から次のようになります。

機構の詰まりが発生する臨界角であり、この角度に対応する速度に相当します。

次に、臨界圧力角については次のようになります。


式 (6.10) から、臨界圧力角は距離の増加とともに減少することがわかります。 機構の寸法が大きくなるにつれて。 臨界角に対応する速度アナログの値は、このアナログの最大値に等しいとほぼ仮定できます。

次に、機構の寸法とプッシャーの運動法則がわかれば、臨界圧力角の値を求めることができます。 機構の詰まりは、通常、有用な抵抗、プッシャーの慣性力、およびばね力、すなわち、持ち上げ段階に打ち勝つことに相当する持ち上げ段階中にのみ発生することに留意する必要があります。 特定の減少した抵抗力 T が克服されたとき (図 6.5)。 下降段階では、ジャミング現象は発生しません。

設計時に機構の詰まりの可能性を排除するために、機構のすべての位置の圧力角が臨界角未満であるという条件が設定されます。 最大許容圧力角が で示される場合、この角度は常に条件を満たさなければなりません。

実際には、プッシャーが徐々に移動するカム機構の圧力角が測定されます。

回転ロッカーアームを備えたカム機構の場合、噛み込みが起こりにくいため、最大圧力角は

カムを設計するときは、圧力角ではなく伝達角を計算に考慮することができます。 この角度は条件を満たさなければなりません

6.4. カム機構の主要パラメータによる圧力角の決定

圧力角はカム機構の基本パラメータで表現できます。 これを行うには、徐々に移動するプッシャー 2 を備えたカム機構 (図 6.4) を考えます。法線を引き、リンク 1 と 2 の相対運動における瞬間的な回転中心を見つけます。これから次のことがわかります。

等式 (6.13) から、選択した運動法則とサイズを使用すると、カムの寸法は半径によって決まり、圧力角は小さくなりますが、カム機構の寸法は大きくなります。

逆も同様で、 を減少させると、圧力角が増加し、機構の効率が低下します。 機構 (図 6.5) において、プッシャーの移動軸がカムの回転軸と を通過する場合、等式 (6.13) は次の形式になります。